
FruitNinja: 3D Object Interior Texture Generation with Gaussian Splatting

Supplementary Material

1. Cross-Section Specifications for Training
In Section 3.2 (Fig. 3), we introduced the use of user-defined cross-sections for generating internal textures. Here, we present the detailed
cross-sectional angles used for training the six objects in our experiments. We used two cross-section types for objects in Fig. 1 due to
their more complex internal structures, whereas the objects in Fig. 2 used only a single type. Additional visual results for objects after
arbitrary geometric transformations demonstrate texture coherence, even when cuts are misaligned with the trained angles.

Figure 1. For the four objects shown above (watermelon, apple, orange, and pomegranate), we use two types of input cross-sections: (1)
Vertical Cross-sections: 30 slices evenly spaced in angle, spanning a full rotation around the central axis of the object (as illustrated in
the second column). (2) Horizontal Cross-sections: We use 40 horizontal slices (as shown in the third column), evenly spaced along the
vertical axis to cover the entire object.

Figure 2. For bread and red velvet cake, we use only vertical cross-sections: (1) Bread: 60 evenly spaced vertical cross-sections (second
column) covering the object. (2) Red Velvet Cake: 30 vertical cross-sections, evenly distributed and radially arranged around the central
axis, spanning a full rotation of the object.



2. Additional Evaluations
2.1. Cross-sections Consistency
We provide additional qualitative evaluations in Figure 3, where the object is sequentially sliced along a fixed direction to assess
cross-sectional texture consistency.

Figure 3. As shown in the first column, objects (cake, orange, apple, and bread) are sequentially sliced along a fixed direction.

2.2. Texture Quality
To evaluate the quality of generated internal textures in the absence of ground truth, we conducted additional evaluations by
using the visual understanding capabilities of Multimodal Large Language Models (MLLMs). These models offer structured,
human-aligned assessments across key perceptual dimensions, making them a convenient and scalable choice for evaluating
generated 3D content. For each of the six trained objects, we sample 100 random slicing angles and render four nearby views
of the sliced object, as shown in Figure 4.

Figure 4. Examples of rendered views used as input prompts for the MLLM-based evaluation. The top row shows slices from FruitNinja,
and the bottom row shows slices from PhysGaussians. Each set includes multiple angles rendered from a sampled slice. These views are
fed into GPT-4v to assess perceptual quality across key dimensions such as texture fidelity, geometry, visual quality etc.



We then prompt the MLLM with a Visual Question Answering (VQA) query to obtain numerical scores for realism, geometric
accuracy and visual quality. Additionally, we extract a confidence score to verify whether the object is correctly identified
during the evaluation. Aggregated results and evaluation details are summarized in Tables 1 and 2.

Evaluation Aspect Prompt Used

Visual Fidelity “To what extent does this internal slice resemble that of a real object? Rate on a scale from 1 to 5.”
Geometry “How accurately does this slice’s geometry match that of a object? Rate on a scale from 1 to 5”
Rendered Quality “Is this internal slice a clear and high-quality view of a object? Rate on a scale from 1 to 5”
Recognition “Based on this internal slice, what object do you believe it represents, and how confident are you in this

identification (0–100%)?”

Table 1. Standardized GPT-4V prompts used to evaluate internal sliced textures across objects.

Evaluation Aspect Method Apple Bread Watermelon Orange Pomegranate Cake

Visual Fidelity (1–5)
PhysGaussian 3.6 3.5 4.0 3.8 3.7 3.9
FruitNinja 4.8 4.7 4.9 4.7 4.6 4.8

Geometry (1–5)
PhysGaussian 3.7 3.5 3.8 3.6 3.5 3.7
FruitNinja 4.6 4.4 4.8 4.5 4.4 4.6

Rendered Quality (1–5)
PhysGaussian 3.8 3.9 4.0 3.8 3.9 4.0
FruitNinja 4.5 4.6 4.7 4.5 4.5 4.7

Recognition (0–100%)
PhysGaussian 85% 82% 88% 84% 80% 86%
FruitNinja 98% 96% 99% 97% 95% 98%

Table 2. Quantitative evaluation results from MLLM for six objects using PhysGaussian and FruitNinja. Higher scores indicate better
performance across four criteria.

3. Method Differences with PhysGaussian
PhysGaussian addresses internal filling of Gaussian particles by discretizing particle opacities onto a uniform voxel grid and
subsequently identifying internal voxels using a ray-casting procedure. Specifically, the density at voxel index i = (i, j, k) is
computed as follows:

ρ(i) =
∑
p

αp ·
1

8

∑
u,v,w∈{0,1}

exp

(
−1

2
(xp − xi+[u,v,w])

⊤Σ−1
p (xp − xi+[u,v,w])

)
,

where xp denotes particle positions, αp opacity, Σp covariance matrices, and xi+[u,v,w] = (i+ [u, v, w]) · dx represent voxel
corner coordinates with voxel size dx. A voxel is identified as internal if it is enclosed by surface regions in all directions,
confirmed by casting rays along coordinate axes and checking intersection conditions:

i ∈ Vinternal if
∏

d∈{±ex,±ey,±ez}

f(i,d) = 1, and

(∑
s

[ρ(i+ sdray) crosses ρray]

)
mod 2 = 1,

where f(i,d) denotes a binary intersection test in direction d, and ρray is the threshold density for intersection checking.
Internal voxels are then populated with new Gaussian particles whose attributes (opacity αnew, covariance Σnew, and color
coefficients Cnew) directly inherit from the nearest surface particle:

pclosest = arg min
p∈Psurf

∥xnew − xp∥2, αnew = αpclosest , Cnew = Cpclosest , Σnew = Σpclosest .



However, this nearest-neighbor inheritance approach inherently assumes internal textures closely resemble surface textures,
often causing unrealistic and blurred internal details (see evaluation results in Tables 1 and 2). In contrast, our proposed
FruitNinja method explicitly synthesizes distinct and realistic internal textures using diffusion-based SDS, guided by selected
reference cross-sectional views (see Section 3 for detailed methodology). FruitNinja introduces a progressive refinement
pipeline and voxel-grid-based smoothing strategies to maintain global consistency of textures and geometry during arbitrary
slicing interactions. Furthermore, OpaqueAtomGS achieves stable training and detailed texture representation by enforcing
atomic clipping and uniform opacification. These measures prevent oversized Gaussians from overlapping multiple cross-
sectional regions and eliminate unintended blending from background contributions, resulting in consistent internal geometry
and enhanced visual realism compared to PhysGaussian (see Figure 4 for visual examples).


	Cross-Section Specifications for Training
	Additional Evaluations
	Cross-sections Consistency
	Texture Quality

	Method Differences with PhysGaussian

