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Supplementary Material

A. Overview

In the supplementary materials, we provide comprehensive
experimental details and extensive ablation studies to eval-
uate the contributions of our framework designs. Addition-
ally, we present qualitative comparisons between our ap-
proach and baseline methods.

B. Experimental Details

B.1. Video Diffusion Model Details

Our diffusion model is built upon a pre-trained image-to-
video latent diffusion model [7] which operates on RGB
latent space. However, we found that relying only on RGB
inputs fails to produce consistent video frames, particularly
in regions with severe artifacts. Therefore, we leverage
depth maps to inject geometry information into the diffu-
sion model. To process RGB-D inputs, we utilize a pre-
trained VAE from LDM3D [6], which is designed to encode
RGB-D image into the latent space. Therefore, given an
RGB-D video of size 4×T×512×320 (T : video length), we
flatten it along the first two dimensions, encode it into latent
features of shape 4T×64×40, and reshape to 4×T×64×40
for diffusion. For CLIP feature embedding, we randomly
sample a reference frame from the input sequence. Dur-
ing reconstruction, the nearest input frame to the target tra-
jectory serves as the reference for the CLIP guidance. In
the training process, each training example comprises an
artifact-prone RGB-D video, a reference image, and one
target RGB-D video. To obtain the temporally consistent
depth map for training, we leverage the SOTA monocular
depth estimatior [1] to augment the training data. During
inference, we employ DDIM sampling with classifier-free
guidance to modulate condition adherence strength. To do
so, we implement random dropout of conditioning images
with 10% probability per sample during training.

In the video diffusion experiment section, we explore
different designations of diffusion model to identify the
optimal balance between model performance and compu-
tational efficiency. Therefore, four diffusion models are
trained and analyzed in three aspects, input type, resolution,
and video length. To this end, the base model that generates
16 frames of videos with a resolution of 512×320 is trained
for 30k iterations using a learning rate of 1e−5 and a batch
size of 2 on each GPU. To assess the impact of depth infor-
mation, we conduct a comparative analysis by training two
base models: one utilizing RGB-D inputs and another with
RGB inputs only. Both models are trained under identi-
cal hyperparameter settings to ensure a fair comparison. To

enhance the quality of generated videos, we fine-tune the
base RGBD model for higher resolution inputs (16 frames
at 960×512) with an additional 34k iterations, maintaining
the same learning rate and batch size configurations. To ex-
tend video generation capabilities, we fine-tune the tempo-
ral layers of our base model to produce 48-frame sequences
for 30k iterations while maintaining the base model’s batch
size and learning rate.

B.2. Masked 3D Reconstruction

In the main paper, we introduce a masked 3D reconstruc-
tion scheme to mime the far-field rendering artifacts. The
marked 3D reconstruction is used in both video diffusion
data generation and novel view synthesis evaluation. In
practice, we use a patch mask of size H/2×W/2 to enable
narrow field-of-view inputs in both settings. But differently,
we randomly select one of the four corner locations for
training dataset generation, since fixing the mask location
introduces diverse artifacts and under-observed regions, en-
riching the dataset’s complexity. However, the extremely
limited observation setup often produces large black regions
near the boundaries. Using such data directly for evaluation
can lead to unrealistically low quantitative metrics in these
regions due to content ambiguity. To enable a fair compar-
ison, we generate a trajectory to move the mask over time,
rather than fixing its location as in video data generation.
This ensures that most scene content is included in the in-
put. Notably, all baselines and our method use the same
sampling trajectories for each scene. To further reduce spar-
sity along the camera trajectory, we downsample the view-
points by factors of 2 and 4, using these masked frames as
our training input while using the remaining full frames for
evaluation.

B.3. Cyclic Fusion

We close the loop between reconstruction and generation
through cyclic fusion that updates the 3D scene representa-
tion (i.e. 2D Gaussian primitives) using input captures and
generated videos.

Warm-up: During the warm-up phase of the fusion pro-
cess, the 3D representation is updated exclusively from in-
put captures for the first 1000 iterations. Afterward, we ap-
ply our reconstruction-driven video diffusion every 1000 it-
erations to remove the artifacts and generate new content for
the video renderings, which are then added to the training
view set.

Sparsity-aware Densification: In the original Gaussian
Splatting [3], scene primitives are cloned and split based



No. Method PSNR↑ SSIM↑ LPIPS↓
1 2DGS baseline 13.87 0.572 0.447
2 +train view monocular depth 13.89 0.575 0.442
3 +sample view rgb 15.33 0.602 0.442
4 +sample view depth 15.34 0.622 0.438
5 +sparsity aware densification 15.81 0.617 0.409

Table 1. Ablation studies using on Tanks and Temples dataset. ↑
indicates higher is better, while ↓ indicates lower is better.

on the average magnitude of view-space position gradients,
and the gradient for each primitive is reset every K steps
(i.e., 100 steps in 3DGS and 2DGS). We find this strategy
performs well in scenarios where the scene is densely cap-
tured. In such cases, primitives are typically observed for
more than half of the reset steps (> K

2 ), making the aver-
aged gradient over K steps a reliable indicator for deciding
whether to add the primitive to the densification list. How-
ever, this strategy becomes unreliable for masked 3D recon-
struction, as the visibility counts of each Gaussian primitive
are significantly lower, resulting in unstable gradient accu-
mulation. To address this, we propose a sparsity-aware den-
sification strategy that maintains the densification list by in-
corporating minimal visibility counts. Specifically, we dis-
able gradient resets and add a primitive to the densification
list only if its gradient exceeds the threshold and its visibil-
ity count surpasses the minimal visibility requirement. Ac-
cordingly, we perform the densification process every 100
iterations to progressively refine the point cloud represen-
tation. We found this strategy is more robust for handling
diverse input scenarios.

C. Ablation Studies

In Table 1, we perform comprehensive ablation studies to
validate the contributions of our model components using
scenes from the Tanks and Temples dataset[4]. We begin
with a vanilla 2D Gaussian Splatting (2DGS) model, fol-
lowing its original implementation, as the baseline. Build-
ing on this, we evaluate the effect of incorporating monoc-
ular depth supervision during training and view sampling
using the ScaleAndShiftInvariant loss [5]. As shown in (2)
of Table 1, this addition does not yield quantitative im-
provements. However, it encourages smoothness in the ren-
dered depth, effectively reducing floating artifacts typically
observed during initial reconstruction stages (visualized in
Figure 1). Significant performance gains are observed in
(3) and (5) of Table 1, attributed to our RGB regularization
and sparsity-aware densification strategies, further confirm-
ing the effectiveness of our method.

D. More Evaluation
D.1. View Interpolation

Table 4 provides a per-scene break down for quantity met-
rics in Mip-NeRF360. These results showcase that our
models consistently improve the baselines.

D.2. View Extrapolation and Scene Completion

Here we present extensive experimental results on masked
3D reconstruction. Figure 2 demonstrate that our perfor-
mance also outperforms baselines in far-field viewpoint ren-
derings. Table 3 and Table 2 provide per-scene quantitative
results.

E. Conclusion
We have observed viewpoint saturation as a fundamental
limitation in previous reconstruction and generation meth-
ods: high-quality reconstruction relies on dense captures,
while generation methods are optimized for weak condi-
tioning. To relax this constraint, we propose GenFusion, an
efficient generative guidance framework that enables accu-
rate 3D reconstruction and content generation for input con-
ditions across varying densities. We achieve this by closing
the loop between reconstruction and generation, creating a
feedback loop where generation becomes aware of the re-
construction status through novel trajectory rendering, and
reconstruction is further regularized using RGB-D videos
generated by our video diffusion model. We evaluate the
interpolation capability using a sparse view reconstruction
setup and the extrapolation capability with a novel masked
reconstruction mechanism. Both tasks demonstrate signifi-
cant improvements over baseline methods. In addition, our
approach achieves scene-level 3D completion, enabling 3D
scene expansion. We hope our findings in bridging recon-
struction and generation can inspire other novel view syn-
theses and 3D scene generation tasks.
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Figure 1. From top to bottom: 2DGS baseline, with train view monocular depth added, with sample view RGB added, with sample view
depth added, and finally with sparsity-aware densification.

3DGS [3] 2DGS [2] FSGS [8] Ours GT
Figure 2. Qualitative comparison of novel view synthesis using masked input on TnT scenes [4].



2DGS 3DGS FSGS Ours
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

14eb48a50e 16.44 0.690 0.384 17.40 0.730 0.360 17.64 0.690 0.434 19.92 0.767 0.351
0a1b7c20a9 15.74 0.733 0.278 16.38 0.760 0.263 18.17 0.752 0.310 19.27 0.811 0.230
06da796666 15.42 0.672 0.396 15.34 0.698 0.390 17.02 0.710 0.437 18.54 0.755 0.376
389a460ca1 18.04 0.810 0.309 18.24 0.824 0.311 18.48 0.799 0.367 21.11 0.861 0.273
2cbfe28643 16.09 0.782 0.257 16.79 0.799 0.254 19.50 0.790 0.321 22.03 0.850 0.227
374ffd0c5f 19.85 0.780 0.256 21.16 0.803 0.250 20.98 0.763 0.327 22.35 0.842 0.224
5c3af58102 15.66 0.692 0.273 15.95 0.709 0.260 16.22 0.661 0.325 20.10 0.794 0.214
66fd66cbed 21.42 0.855 0.235 22.15 0.873 0.224 22.29 0.867 0.246 23.27 0.897 0.191
3bb3bb4d3e 16.89 0.795 0.266 17.85 0.810 0.253 18.84 0.780 0.319 22.48 0.883 0.198
91afb9910b 19.18 0.765 0.274 19.91 0.773 0.278 20.86 0.776 0.304 22.76 0.820 0.240
7705a2edd0 16.74 0.698 0.398 16.78 0.712 0.396 18.89 0.715 0.440 21.71 0.792 0.350
71b2dc8a2a 15.67 0.796 0.264 15.94 0.814 0.252 20.42 0.857 0.252 21.64 0.887 0.199
a726c1112a 18.60 0.804 0.321 19.45 0.832 0.295 17.02 0.726 0.423 20.00 0.83 0.297
cbd44beb04 16.46 0.700 0.311 17.40 0.728 0.299 17.35 0.706 0.349 19.38 0.789 0.285
df4f9d9a0a 17.21 0.743 0.358 18.04 0.768 0.344 19.36 0.777 0.356 21.82 0.845 0.268
6d22162561 15.79 0.663 0.398 16.62 0.681 0.401 18.07 0.671 0.441 20.58 0.737 0.372
6d81c5ab0d 13.19 0.540 0.448 14.22 0.601 0.425 14.47 0.573 0.492 16.42 0.634 0.448
ec305787b7 16.75 0.751 0.286 16.98 0.763 0.278 16.78 0.688 0.381 22.122 0.846 0.211
85cd0e9211 18.17 0.758 0.285 18.45 0.767 0.289 18.90 0.688 0.372 22.73 0.814 0.269
95e4b24092 13.97 0.581 0.353 13.66 0.596 0.351 14.99 0.598 0.373 15.99 0.609 0.345
7da3db9905 16.51 0.737 0.309 18.69 0.778 0.285 19.98 0.765 0.314 22.09 0.831 0.231
d3812aad53 15.09 0.607 0.454 16.16 0.654 0.438 16.80 0.662 0.451 17.43 0.684 0.428
b0c4613d6c 15.10 0.612 0.332 15.54 0.623 0.336 17.71 0.637 0.368 19.00 0.668 0.324
b4f53094fd 13.48 0.634 0.306 14.28 0.653 0.299 17.17 0.677 0.311 18.59 0.698 0.271
average 16.56 0.717 0.323 17.22 0.740 0.314 18.25 0.722 0.363 20.47 0.788 0.284

Table 2. Quantitative comparison on DL3DV datasets. Each method is trained on 7000 steps.

2DGS 3DGS FSGS Ours
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

barn 16.80 0.675 0.371 17.64 0.685 0.377 18.47 0.677 0.405 17.84 0.672 0.402
ignatius 15.75 0.588 0.329 15.88 0.591 0.359 16.14 0.521 0.458 17.51 0.614 0.363
meetingroom 17.63 0.672 0.364 17.80 0.694 0.356 17.71 0.667 0.421 19.37 0.733 0.348
truck 14.66 0.646 0.357 15.39 0.663 0.361 16.69 0.654 0.407 16.80 0.673 0.383
courthouse 14.80 0.630 0.411 15.15 0.640 0.419 15.80 0.632 0.454 15.68 0.622 0.461
caterpillar 13.79 0.532 0.403 14.33 0.542 0.431 15.35 0.530 0.490 16.58 0.580 0.432
train 13.77 0.561 0.423 14.31 0.587 0.424 14.47 0.528 0.516 15.34 0.580 0.458
average 15.31 0.615 0.380 15.79 0.629 0.390 16.38 0.601 0.450 17.01 0.639 0.406

Table 3. Quantitative comparison on TnT datasets. Each method is trained on 7000 steps with 1/2 frames



2DGS 3DGS FSGS Ours
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

3 Views
bicycle 12.70 0.124 0.622 14.33 0.300 0.556 14.30 0.234 0.624 15.46 0.275 0.647
bonsai 11.60 0.300 0.568 10.92 0.301 0.736 13.75 0.376 0.524 14.12 0.418 0.534
counter 13.17 0.311 0.539 12.62 0.305 0.597 13.99 0.392 0.527 15.20 0.470 0.520
garden 13.06 0.184 0.575 12.08 0.145 0.649 14.33 0.274 0.586 16.65 0.305 0.580
room 13.79 0.410 0.490 13.04 0.342 0600 14.26 0.483 0.484 16.40 0.570 0.438
stump 14.63 0.171 0.593 14.10 0.196 0.626 15.93 0.276 0.607 17.13 0.317 0.640
kitchen 14.07 0.307 0.542 13.35 0.257 0.621 14.76 0.361 0.538 16.02 0.427 0.542
flowers 10.57 0.104 0.657 10.08 0.129 0.794 12.17 0.177 0.664 12.89 0.210 0.715
treehill 11.95 0.186 0.627 11.22 0.200 0.793 14.10 0.290 0.647 12.89 0.326 0.652
average 13.06 0.318 0.576 13.07 0.243 0.580 14.17 0.318 0.578 15.29 0.367 0.585

6 Views
bicycle 14.35 0.188 0.576 12.92 0.181 0.663 15.76 0.294 0.597 16.52 0.311 0.604
bonsai 14.77 0.471 0.457 13.07 0.373 0.602 16.67 0.546 0.436 16.55 0.557 0.441
counter 15.09 0.428 0.467 13.77 0.352 0.535 16.02 0.495 0.449 16.99 0.545 0.428
garden 16.06 0.308 0.465 14.03 0.201 0.569 17.57 0.401 0.504 18.74 0.406 0.490
room 14.80 0.481 0.446 13.98 0.426 0.564 15.22 0.542 0.443 17.54 0.623 0.410
stump 16.13 0.229 0.556 14.62 0.201 0.609 17.58 0.323 0.582 18.36 0.343 0.585
kitchen 17.12 0.494 0.397 15.11 0.321 0.530 17.64 0.577 0.374 18.54 0.560 0.390
flowers 11.89 0.145 0.607 10.89 0.147 0.757 13.21 0.211 0.649 14.01 0.237 0.658
treehill 13.33 0.240 0.584 12.10 0.222 0.741 15.46 0.347 0.613 15.36 0.363 0.605
average 14.96 0.355 0.505 15.02 0.338 0.506 16.12 0.415 0.517 17.16 0.447 0.500

9 Views
bicycle 15.30 0.237 0.536 13.53 0.213 0.648 17.15 0.343 0.577 17.10 0.332 0.578
bonsai 17.43 0.609 0.373 15.51 0.460 0.482 19.30 0.669 0.356 19.31 0.662 0.354
counter 16.42 0.516 0.406 14.54 0.391 0.493 17.63 0.572 0.391 18.23 0.607 0.379
garden 18.10 0.412 0.397 15.06 0.250 0.522 19.22 0.477 0.455 19.97 0.470 0.446
room 17.36 0.600 0.370 15.49 0.492 0.499 18.16 0.662 0.359 19.75 0.700 0.366
stump 17.45 0.300 0.514 15.69 0.237 0.548 18.72 0.386 0.555 19.40 0.392 0.553
kitchen 19.17 0.611 0.324 16.21 0.393 0.473 20.30 0.682 0.305 20.59 0.640 0.322
flowers 13.01 0.191 0.564 12.01 0.163 0.695 14.33 0.247 0.629 14.95 0.267 0.629
treehill 14.34 0.300 0.555 13.23 0.265 0.733 15.46 0.347 0.613 15.98 0.390 0.595
average 16.79 0.447 0.446 16.67 0.423 0.449 17.94 0.492 0.471 18.36 0.496 0.465

Table 4. Per-scene Quantitative comparison on sparse view reconstruction
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