
Generating Multimodal Driving Scenes via Next-Scene Prediction

Supplementary Material

In this supplementary material, we provide the following
sections:

• Additional visualizations generated by the AMA mod-
ule to offer deeper insights into its functionality and
demonstrate how it ensures consistency between ego-
action and map modalities.

• Detailed explanations of the tokenization process, to-
ken embedding mechanisms, the configuration of hyper-
parameters for both the model architecture and the train-
ing setup, and decoder design.

• Comprehensive quantitative evaluation of the gener-
ated modalities.

• Additional visualizations of the comparative image
quality with and without diffusion decoder

A. Visualization of the transformed map in
AMA module

To better illustrate the purpose and effect of the trans-
form operation within the AMA module, we employ visu-
alizations to demonstrate how map features are dynamically
updated in response to the ego-vehicle’s motion.

As shown in Fig. 1, the ego-vehicle performs a forward
motion at the current timestep. Consequently, in the trans-
formed map for the next frame, the features from the cur-
rent map shift backward relative to the ego-vehicle’s new
position. Regions previously outside the forward view are
filled in to account for the unseen areas. This visualization
highlights how the transform operation aligns the map fea-
tures with the vehicle’s actions, ensuring spatial and tempo-
ral consistency.

Figure 1. Visualization of the map and map features, both
before and after transformation. Solid points represent exist-
ing map features, while hollow points indicate filled-in features
for previously unseen regions. The ego-vehicle’s forward motion
causes the map features to shift backward in the transformed map
of the next frame, illustrating the alignment between the map fea-
ture and the ego-vehicle’s action

B. Implementation Details

1. Tokenization Method

The tokenization standardizes and discretizes various el-
ements of the driving scenario, including ego-actions, raster
maps, agents, and images. This ensures compatibility
across modalities and facilitates efficient sequence gener-
ation.

1.1 Normalization and Discretization

Continuous variables are normalized to the range [0, 1]
using:

vnorm =
v − vmin

vmax − vmin
, (1)

where v is the original value, vmin and vmax are predefined
bounds, and vnorm is the normalized result.

After normalization, the token ID vID is assigned by dis-
cretizing the normalized value vnorm into one of 1024 equal
intervals within the range [0, 1]. Each interval corresponds
to a unique token ID. Specifically, the token ID is deter-
mined by identifying the interval that contains vnorm:

vID = i such that
i

1024
≤ vnorm <

i+ 1

1024
, (2)

where i ∈ {0, 1, . . . , 1023}.

1.2 Latent Encoding for Image-like Data

For raster maps and images, two separate pre-trained
VQ-GAN models [2] are used to encode the data into la-
tent vectors, respectively. Each latent vector z is quantized
to the nearest codebook entry from a set of N + 1 learned
embeddings {e0, e1, . . . , eN}, assigning the token ID t:

t = i such that ∥z− ei∥2 ≤ ∥z− ej∥2, ∀j ̸= i, (3)

where i, j ∈ {0, 1, . . . , N}.

2. Tokenization Process

The tokenization process for different modalities lever-
ages attribute ranges derived from statistical analysis of the
nuPlan dataset [1]. Table 1 provides a summary of these
ranges, which serve as the basis for consistent normaliza-
tion and discretization across modalities.

1



Table 1. Predefined minimum and maximum values for attribute

Attribute vmin vmax

Position (x) −64m 64m
Position (y) −64m 64m
Position (z) −5m 5m

Agent Length 0m 15m
Agent Width 0m 4m
Agent Height 0m 5m

Heading −π rad π rad
Speed (vx) −20m/s 20m/s
Speed (vy) −20m/s 20m/s
Speed (vz) −0.3m/s 0.3m/s

Ego-action Displacement (dx) 0m 10m
Ego-action Displacement (dy) −0.5m 0.5m
Ego-action Angular Change −0.25 rad 0.25 rad

2.1 Ego-actions

Ego-vehicle actions include displacements (x, y) and an-
gular changes relative to the previous timestep. These are
tokenized using the normalization and discretization pro-
cess.

2.2 Raster Maps

A 128 × 128-meter map centered on the ego-vehicle is
rasterized into a grid. Each cell represents a fixed spatial
resolution and encodes one of six road types: lane, stop line,
crosswalk, intersection, middle lane line, and lane connec-
tor. This produces a tensor m ∈ R256×256×6.

A pre-trained VQ-GAN model processes the tensor,
quantizing each latent vector to produce token IDs that rep-
resent the map structure.

2.3 Agents
Agents—including vehicles, pedestrians, and cy-

clists—are represented as 11-dimensional vectors. At-
tributes include position (x, y, z), speed (vx, vy, vz), and
heading, all defined relative to the ego-vehicle coordinate
system, as well as dimensions (length, width, height) and
category.

• Position, Speed, and Heading: Tokenized via normal-
ization and discretization.

• Category: Assigned discrete IDs—1024 for vehicles,
1025 for pedestrians, and 1026 for cyclists.

If fewer than 64 agents are present in a scenario, pad to-
kens are used. Each pad token (ID: 1027) has default values
for all attributes, ensuring they do not interfere with down-
stream processing.

Table 2. Hyperparameter configuration of the model architecture

Hyperparameter Value
Feature Dimension 768

CAhist Layers in Ego-action Prediction Module 12
CAenv Layers in Ego-action Prediction Module 12
Temporal Causal Self-attention Layers in TAR 24

Bidirectional Self-attention Layers in TAR 24
Causal Self-attention Layers in OAR 24

Table 3. Training Configuration

Hyperparameter Value
Learning Rate 1× 10−4

Batch Size 192
Optimizer AdamW

Number of Training Epochs 300
Block Size 20

Dropout Rate 0.15
Temperature 1.0

Top-k 16
Codebook Size of Ego-action 1024
Codebook Size of Raster Map 8192

Codebook Size of Agent 1028
Codebook Size of Image 8192

2.4 Images

Input images of size 512× 256 are encoded using a pre-
trained VQ-GAN. Each latent vector is quantized, and token
IDs form a grid that retains the spatial and semantic struc-
ture of the original image.

3. Token Embedding

To enable the model to process multimodal data effec-
tively, tokens from different modalities are concatenated
into a single sequence, which serves as the input to the em-
bedding layer. A start token and an end token delineate the
boundaries of each modality, ensuring structural clarity and
facilitating positional encoding.

Each modality is assigned a separate learnable codebook
to obtain embeddings for its tokens. For the Image and
Raster map modalities, the codebooks are initialized with
pre-trained codebook weights from their respective VQ-
GAN models at the start of training. Subsequently, a po-
sitional encoding is added to each token embedding, as de-
scribed in the main text. This positional encoding ensures
that the sequential order and spatial relationships within the
tokenized data are preserved, enabling the model to capture
both modality-specific features and their contextual depen-
dencies.

2



4. Model Hyperparameters and Training Settings

4.1 Model Structure

As shown in Table 2, we list out the detailed hyperpa-
rameters of our model structure.

4.2 Training Setting

As shown in Table 3, we provide a detailed list of the hy-
perparameters used in the training setup. The block size de-
notes the number of timesteps or data points considered for
sequence modeling. The temperature and top-k parameters
control the stochasticity and diversity of the output during
sampling, where temperature adjusts the probability distri-
bution of predictions, and top-k limits the sampling to the
k-most probable candidates.

5. Decoder Design

The decoder transforms tokens back into their original
representations. For ego-action and agent attributes, it maps
tokens to continuous values based on predefined ranges (see
Table. 1 in supplementary materials). For map and image
tokens, pre-trained VQGAN decoders reconstruct the origi-
nal data. The architecture is shown in Fig. 2.

Figure 2. Visualization of the Decoder. The decoder maps ego-
action and agent attribute tokens to continuous values using prede-
fined ranges, while pre-trained VQGAN decoders reconstruct map
and image tokens.

C. Quantitative Evaluation of Generated
Modalities

In this section, we present a comprehensive quantita-
tive evaluation of the generated modalities, focusing on im-
age quality, ego-action and agent trajectory prediction, and
map realism. For image quality assessment, we employ
the Fréchet Inception Distance (FID) metric, as detailed in
Tab. 4. To evaluate the accuracy of ego-action and agent tra-
jectory predictions, we utilize the ℓ2 distance, with results
summarized in Tab. 5. As a baseline, we consider a sce-
nario where both agents and the ego-vehicle maintain the
velocity from the last frame, providing a reference point for
comparison.

Since FID is not well-suited for evaluating multi-channel
maps, we instead assess the realism of generated maps us-
ing a PatchGAN discriminator derived from our pre-trained

VQGAN model. The realism score, averaged across all
samples (see Tab. 6), quantifies how convincingly the gen-
erated maps resemble real-world counterparts. A higher
score indicates greater realism, while a score close to 0 sug-
gests that the discriminator struggles to classify the map as
real. Furthermore, we measure the distributional distance
between generated map samples and ground truth (GT) map
data using Maximum Mean Discrepancy (MMD), provid-
ing insights into the alignment of the generated distributions
with the real data.
Table 4. FID scores of generated images for different frame
lengths. The ’-D’ indicates the use of a diffusion image decoder.

Method 32 Frames 64 Frames 128 Frames
UMGen 20.91 22.96 27.50

UMGen-D 15.17 18.41 21.86

Table 5. Evaluation of ego-action and agent trajectory predictions.
Method ℓ2 distance to GT (m)

Ego-Action Agent Trajectory
Last Frame Velocity 0.060 1.53

UMGen 0.027 0.54

Table 6. Evaluation of generated map realism.
Random UMGen Ground Truth

Realism Score ↑ -9.3 0.014 0.3692
MMD Score ↓ 0.503 0.025 0

D. Image Enhancement via a Diffusion Model
As discussed in the main paper, diffusion models can

be a complementary part of our framework—AR ensures
structured generation, while diffusion refines image fidelity.
This hybrid approach has better image FID scores as in
Tab. 4 and visual improvements in Fig. 3.

References
[1] Holger Caesar, Juraj Kabzan, Kok Seang Tan, Whye Kit

Fong, Eric Wolff, Alex Lang, Luke Fletcher, Oscar Beijbom,
and Sammy Omari. nuplan: A closed-loop ml-based plan-
ning benchmark for autonomous vehicles. arXiv preprint
arXiv:2106.11810, 2021. 1

[2] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming
transformers for high-resolution image synthesis. In Proceed-
ings of the IEEE/CVF conference on computer vision and pat-
tern recognition, pages 12873–12883, 2021. 1

3



Figure 3. Generated images with and without diffusion models as the image decoder.

4


