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1. Neural Radiance Field
Neural implicit surface. We apply the neural volume
rendering framework to represent implicit surfaces and fol-
low VolSDF [6] to parameterize the density values with the
transformation of an SDF. For each pixel, we sample N
points along the camera ray and approximate the color Ĉ
by:

Ĉ =

N∑
i=1

wici, (1)

with wi = Ti (1− exp(−σiδi)) , Ti = exp

−
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σjδj

 ,

(2)
where wi is the weight of rendering, σi and ci denote the
density and color at each sampled point i on the ray, and δi
is the distance between adjacent samples. The density is de-
fined as Laplace’s cumulative distribution function applied
to a signed distance d, as follows:
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{
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(
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)
if d > 0

. (3)

Herein, β is a learnable parameter during network train-
ing. In practice, we use MLPs to take 3D coordinates as
input and output the corresponding signed distance as well
as a global geometric feature vector. Referring to Eq. 3, the
estimated SDFs are transformed to density values for volu-
metric integration of Eq. 2.

Decomposed radiance fields. The outgoing radiance c of
a sampled point x on the camera ray can be decomposed
into diffuse radiance cd and specular radiance cs, respec-
tively, as follows:

cd = fθ(b,x), c
s = gθ(b, IDE(η, ωr)), and c = γ(cd+cs),

(4)
where fθ(·) and gθ(·) denote MLPs with learnable param-
eters, and b is the geometric feature vector as mentioned
above. Following the representations in Eq. 7, the diffuse
surfaces should satisfy the property of Lambertian, thus cd

in fact is only a function of position. However, for spatially-
varying specular effects, following Verbin et al. [5], the ra-
diance has strong correlations with surface roughness η and
the reflective direction of light ωr. With integrated direc-
tional encoding (IDE), the directions are encoded with a set
of spherical harmonics, which enables the network to better

reason about the inherent properties of the material. Finally,
the diffuse and specular components are combined together
with a fixed tone mapping function γ.

2. Polarimetric BRDF Model
In this work, we only consider linear polarization and build
a scalable setup for the polarization image acquisition. To
provide a clearer understanding of how polarization infor-
mation is utilized in our method, We begin by presenting in
the following the fundamental concepts.

Stokes vector. The polarization state of light is often char-
acterized by the Stokes vector s, which is usually computed
by taking a series of measurements with different rotation
angles, for example, polarized images with four different
polarizing angles 0◦, 45◦, 90◦ and 135◦, represented by I0,
I45, I90 and I135:

s = [s0, s1, s2, s3]
T = [I0 + I90, I0 − I90, I45 − I135, 0]

T .
(5)

Mueller matrix. Any change of the polarization state due
to the interaction with optical elements, such as linear polar-
izers or object surfaces, can be denoted as a multiplication
of the corresponding Stokes vector with a Mueller matrix
M ∈ R4×4. The incident and outgoing Stokes vector, rep-
resented by sin and sout, respectively, are related by

sout = Msin. (6)

For surface reflection, considering the distant incident
illumination Li, which is commonly assumed to be un-
polarized, its corresponding Stokes vector is denoted as
si = Li[1, 0, 0, 0]

T . Based on the pBRDF model proposed
by Baek et al. [1], the Mueller matrix can be decomposed as
the sum of diffuse component Md and specular component
Ms, i.e., M = Md +Ms. Therefore, the outgoing Stokes
vector can be reformulated as follows:

sout = (Md +Ms)sin = Likd(n · i)︸ ︷︷ ︸
cd
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(7)
In essence, Md and Ms depend on surface albedo, sur-

face normals, refractive index, and lighting conditions. In
short, n, i, and o represent surface normal, incident and out-
going light direction, respectively. kd is the diffuse albedo,
ks is the specular albedo, T and R are the Fresnel transmis-
sion and reflection coefficients. Refer to Baek et al. [1] for



detailed explanations and computation of remaining param-
eters. Herein, we denote the coefficients of the two terms
on the right side of Eq. 7 as diffuse radiance cd and specular
radiance cs.

3. Polarization Rendering
As shown in Fig. 2 and the following rendering pipeline,
we use a polarization image Iϕpol as the input and leverage
polarimetric BRDF model, characterized by the neural ra-
diance field, to estimate the outgoing Stokes vectors sout,
which lay the foundation for polarization rendering. Re-
fer to Eq. 7 in the supp. for how to render sout using dif-
fuse, specular, and roughness components. Subsequently,
we present a differentiable processing pipeline to estimate
the ϕpol, eliminating the need for precise polarization an-
gle measurements and facilitating the implicit rendering of
desired polarized images Iout

ϕpol
for loss calculation.
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4. Implementation Details
The SDF network takes the 3D coordinate as input and ap-
plies the positional encoding (PE) to spatial locations using
6 frequencies. This encoded input is then processed through
8 fully connected layers with 256 channels each, utilizing
ReLU activations. Additionally, the encoded input vector is
connected to the output feature at the 4th layer through a
skip connection. The network outputs the signed distance
value and an extra 256-dimensional geometric feature vec-
tor. Notably, surface normals can be obtained as the normal-
ized gradient of the neural SDF. To initialize parameters of
the SDF network, we utilize geometric initialization meth-
ods as described by Gropp et al. [2].

The diffuse radiance fθ, roughness, and mask prediction
functions share similar network architectures. They take the
concatenation of the geometric feature vector and the en-
coded spatial locations with 10 frequencies as input. The
network is composed of 4 MLP layers with a width of 512
channels. The output structures contain 3 channels with sig-
moid, 1 channel with softplus, and 1 channel with sigmoid,
respectively. For the estimation of specular components [5],
we enable the network to reason about radiances with the in-
tegrated directional encoding of roughness and the encoded
reflective directions with PE of 2 frequencies. gθ also uses
4 fully connected MLP layers with 512 channels per layer
and outputs 3 channels with the softplus.

Our algorithms are implemented in Pytorch [4]. In our
experiments, we use a batch size of 512 rays, each sampled

at 128 locations. We use the Adam optimizer [3] (β1 = 0.9,
β2 = 0.999) with a learning rate that begins at 5 × 10−4

and decays exponentially to 5 × 10−5 during training. To
better warm up the training, in the early 10k iterations, we
define Lrgb as the loss between the predicted radiance c in
Eq. 4 and the ground truth. In the next 5k iterations, we
replace c with the diffuse components of sout

ϕpol
, which are

subsequently used for loss computation. In addition, The
refractive index of the object is set to 1.5. The optimization
for a single object typically takes around 200k iterations to
converge on a single NVIDIA Titan X GPU (∼ 2 days).
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