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1. Introduction Details

1.1. Calculation of the information preservation de-
gree

To measure the information completeness of the video after
compression using different VAE models, we borrow from
the way of calculating the information loss rate of the di-
mensionality data in Principal Component Analysis (PCA),
which is formulated as:∑m

i ∥xi − x′
i∥2∑m

i ∥xi∥2
, (1)

where xi is the original video, x′
i is the reconstructed video

and m is the number of samples. However, considering that
MAE loss is used instead of MSE loss in the training of
VAE model, we adopt the following formula to measure the
information preservation degree:

1−
∑m

i |xi − x′
i|∑m

i |xi|
. (2)

1.2. Calculation process of SSIM results of different
frames within a frame group

To measure the performance of frames with different posi-
tions in each frame group, we calculate the SSIM results
for different frames in the 17 reconstructed frames on the
Kinetics-600 validation set. After excluding the first im-
age frame, the remaining 16 frames contain 4 frame groups.
We calculate the average performance of frames at the same
position in different frame groups, e.g., the first frame of
each frame group, whose positions in the 16 frames are 1,
5, 9, and 13, respectively. In this way, we obtain the aver-
age performance of each position in a group of frames for a
not-so-short time series, to ensure the generalization of the
experimental results.

*Kai Zhu and Wei Zhai are the corresponding authors.

2. Method Details

2.1. Group Causal Convolution

Grouping of the input video frames is done before input to
the network, each tc frames (tc is the temporal compression
rate) are labeled as a frame group and there is no overlap
between the frame groups. During the forward process of
the whole network, the tc frames in a frame group will be
compressed to one frame and then restored to tc frames,
so the number of frames in a frame group varies at differ-
ent locations in the network. For each temporal downsam-
pling/upsampling operation of the feature map, the number
of frames contained in the frame group for that layer of the
network is decreased/increased by the same factor. During
the encoding process, the number of frames in the frame
group is reduced from tc to 1 and then restored to tc after
the decoding process.

2.2. Weight Initialization

When expanding an image VAE into a video VAE, in ad-
dition to expanding the 2D convolutions into 3D convolu-
tions based on the center initialization [1], it is necessary
to set the weights of the newly added temporal downsam-
pling layers and temporal upsampling layers. To make the
video VAE can initially recover a complete frame from the
tc frames (tc is the temporal compression rate, i.e., 4), we
let the temporal downsampling layer initially behave as an
identity mapping of the features of a particular frame, and
then discard the features of the other frames. Specifically,
noting the initial temporal downsampling layer weights as
Wdown ∈ Rc×c×kt×kh×kw , where the number of input and
output channels are both c, kt, kh, kw are the sizes of the
convolution kernel in the dimension of time, height, width,
respectively, and the convolution stride is 2. All values of
matrix Wdown are initialized to 0. Then we construct a 2D
identity matrix I ∈ Rc×c, with diagonal values of 1 and
other values of 0. The values of the matrix Wdown are as-
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signed as follows:

Wdown[:, :, t, (kh − 1)//2, (kw − 1)//2] = I, (3)

t represents which frame’s features need to be inherited,
e.g., to initial recover the last frame’s features, making t
equal to -1 for causal convolution. [(kh − 1)//2, (kw −
1)//2] denotes the center of the convolution kernel.

For the newly added temporal upsampling layer, we let
it behave as a repeat of the existing frame features. Specif-
ically, noting the temporal upsampling layer weights as
Wup ∈ R2c×c×kt×kh×kw , where the number of output
channels is twice the number of input channels c. All values
of matrix Wup are initialized to 0. Then the values of the
matrix Wup are assigned as follows:

Wup[: c, :, t, (kh − 1)//2, (kw − 1)//2] = I,

Wup[c :, :, t, (kh − 1)//2, (kw − 1)//2] = I.
(4)

For the generated feature maps, we use the stack operation
to convert twice the number of channels to twice the number
of frames, thus achieving temporal upsampling.

3. Experiments
3.1. Experimental Setup
Training Dataset. We use in-house data to train the
video VAE. It is worth noting that the training data does not
contain the test datasets used in the paper, such as Kinetics-
400/600, ActivityNet, and OpenVid-0.4M.

Training losses. During the training process, we use
MAE, LPIPS, KL, and GAN losses as training losses, where
GAN loss is only added in the last stage of video VAE train-
ing. Considering that all the losses are computed on the im-
age aspect using the form of sum, the scales of the losses
are not the same for different resolutions. So we normalize
the loss for different resolutions to the same magnitude as
the loss for 256×256 resolution. The total loss on h × w
resolution video is formulated in the following form:

L =
256× 256

h× w
×(LMAE+LLPIPS+αLKL+βLGAN ),

(5)
where α = 3 × 10−6 and β = 0.8 if GAN loss is used,
otherwise β = 0.

Latte setting. On the video generation task, we use
exactly the same training settings for all methods, i.e., a to-
tal video data batch size of 32 (on 4 A800 GPUs), a learning
rate of 1e-4, a frame number of 17, a sampling step number
of 250, a frame interval of 3. In particular, image data is
used for training on the SkyTimelapse dataset, and we set
the total image data batch size to 20 for all methods.

3.2. Qualitative evaluation of reconstruction results
In Fig. 3, Fig. 4, Fig. 5, Fig. 6, and Fig. 7 we compare the re-
construction results of different methods in various scenes,

including long sequence reconstruction, fast-motion, face
reconstruction, textual reconstruction, and sudden change
of neighboring frames, respectively. Specifically, in Fig. 3,
we show the reconstruction results for a long sequence of
frames (9 frames), where poorly reconstructed regions are
circled. For other methods, there is the general problem that
the performance of the first frame of each frame group is
much lower than the average performance, leading to obvi-
ous reconstruction flicker within and between frame groups.
In contrast, the reconstruction results of our method are
more stable and consistent.

In Fig. 4, we show the reconstruction results within a
frame group at a fast camera motion (a frame interval of 3)
and list some common reconstruction problems. For CogX-
VAE, the reconstruction performance of the first and sec-
ond frames within a frame group is poor and there appears
to be a performance imbalance. For OD-VAE, most of the
frames show significant color deviations in the details, in-
dicating that the model is difficult to achieve effective tem-
poral compression when the motion is fast. OS-VAE and
CV-VAE suffer from motion blur, making it difficult to re-
construct details. In contrast, our method has high quality
and consistency of reconstruction results at both Z = 16
and Z = 4, which validates the stability and high perfor-
mance of IV-VAE in fast-motion scenarios.

In Fig. 5, we compare the quality of face reconstruction
by different methods. On the latent channel number of 16,
our method can almost perfectly restore the face of the per-
son at any frame, while CogX-VAE reconstructs roughly
and unclearly in some details, especially on the first frame,
where these areas are circled in red. On the latent chan-
nel number of 4, all methods struggle to reconstruct a very
small face well. The reconstruction results of OD-VAE and
CV-VAE have serious distortion problems. OS-VAE, al-
though relatively consistent in the shape of the face, has
large differences in color and structure from the original im-
age, such as the position of the eyes, the shape of the lips,
and the letter on the hood. In general, our method is clos-
est to the original image in terms of color, structure, and
texture.

In Fig. 6, we compare the quality of text reconstruction
by different methods. On Z = 16, we can reconstruct al-
most the same clarity as the original image, and most of the
text is recognizable. Compared to CogX-VAE, our recon-
structed text is significantly more recognizable and almost
without perturbations and distortions. The performance of
IV-VAE is also more consistent for all four frames, while
the performance of CogX-VAE for the third frame is sig-
nificantly higher than the others. On Z = 4, reconstructing
fine text is difficult. In this case, our method can reconstruct
the headlines with large font well on all four frames, while
other methods struggle to do so accompanied by blurring
and distortion. Even on small text, IV-VAE (Z = 4) can



achieve significant clarity improvement compared to other
methods.

Fig. 7 illustrates a special case when there is a dras-
tic change in part of the region of two neighboring frames
within a frame group, i.e., a caption that does not exist in
the first frame appears in the second frame. In this case,
although other methods reconstruct the caption in the sec-
ond frame, the reconstruction result of the first frame is af-
fected in different degrees, with the caption in the second
frame appearing in the first frame or causing a perturba-
tion distortion. We attribute this anomaly to the fact that
causal convolution makes the interaction of different frames
within a frame group unbalanced. For example, the first
frame of a frame group can only interact with later frames
in the middle layer of the network. This incomplete and in-
sufficient interaction results in the process of compression
and decompression of the frame group not being able to ef-
fectively separate the information of different frames. To
solve this problem, the proposed group causal convolution
enables different frames of the same frame group to interact
with each other bidirectionally at any layer of the network,
making our IV-VAE perform better in this case in Fig. 7.

3.3. More video reconstruction results
We randomly select 20K videos from kinetics-600 for test-
ing, with a setting of 512×512 17-frame, and the results are
shown in the Table 1. The results on larger datasets validate
the effectiveness and generalization of our method.
Method CV-VAE OS-VAE OD-VAE IV-VAE(Z=4) CogX-VAE IV-VAE(Z=16)
PSNR↑ 32.67 34.80 34.20 34.67 38.53 39.46
SSIM↑ 0.9150 0.9289 0.9264 0.9314 0.9682 0.9701
LPIPS↓ 0.08041 0.08016 0.05457 0.05152 0.02849 0.02158

Table 1. Reconstruction comparison of 20K videos on Kinetics-
600 dataset. The experiments are performed using 512x512 reso-
lution and 17 frames.

3.4. More video generation results
In addition to validating the generation performance using
the Kinetics-400 [4] and SkyTimelapse [10] datasets in the
main paper, we further explore class-conditional video gen-
eration in UCF-101 [8] and unconditional video generation
on FaceForensics [5]. On the UCF-101 dataset, apart from
FVD metric, we use Inception Score (IS) [7] as the metric.
When computing IS, we remove the first frame of the gen-
erated results to utilize the remaining 16 frames for testing,
since the C3D [6] model employed in IS is trained using 16
frames of video on UCF-101. As shown in Table 2, we also
achieve state-of-the-art results on both datasets, especially
on the FaceForensics dataset, where we obtain a decrease of
25.7 FVD compared to OD-VAE.

In Fig. 8 and Fig. 9, we further show the generated re-
sults of Latte using different video VAEs after training on
the SkyTimelapse and FaceForensics datasets, respectively.
Compared to other methods, the results generated by Latte

Method UCF-101 FaceForensics
FVD↓ IS↑ FVD↓

CV-VAE [12] 587.9 84.7 328.2
OS-VAE [3] 674.1 85.2 316.3
OD-VAE [2] 565.2 82.5 285.5

IV-VAE 557.5 85.7 259.8

Table 2. Video generation results.

using our VAE have higher realism, clarity, and more stable
motion, validating the effectiveness of the proposed IV-VAE
for the video generation task.

3.5. Ablation Study
Comparison with baseline. In Table 3, we compare the
computational effort and performance of the proposed IV-
VAE with the baseline on Z = 16. Overall, IV-VAE in-
creases the computational effort by 13% but reduces the pa-
rameters by 15%. With similar computational and parame-
ter counts, the model performance is substantially improved
as shown on the right side of Table 3. In addition to the
Kinetics-600 dataset, the advantages of IV-VAE are more
significant at larger motion speeds and higher resolutions,
e.g., on MotionHD at 1080P resolution, IV-VAE (Z = 16)
achieves a 1.73 PSNR and 0.057 SSIM improvement com-
pared to the baseline, which is a huge boost.

Method Params↓ FLOPS↓ Kinetics-600
PSNR↑ SSIM↑ LPIPS↓

Baseline 127M 30.5T 38.07 0.9641 0.0289
IV-VAE 108M 34.6T 39.02 0.9685 0.0228

+∆ (-15%) (+13%) (+0.95) (+0.044) (-0.0061)

Table 3. Comparison with baseline. FLOPS are calculated using
a 17-frame 512×512 video. Reconstruction results for Z = 16
are reported.

Why choose a dual branch of 2D+3D. We ablate the
branch structure of the KTC unit by replacing the Conv2D
with GCConv3D. The experimental results are listed in Ta-
ble 4, compared to the original 2D+3D structure, using the
3D+3D structure can achieve a slight enhancement. How-
ever, it also increases the parameter count by 23%, indi-
cating insufficient parameter efficiency. This may be due
to the fact that the spatial compression rate is higher than
the temporal compression rate, and spatial compression is
more challenging, thus replacing the 3D convolution with
a 2D convolution causes only a slight performance penalty
but reduces the parameter count significantly. So we finally
choose 2D+3D as a more efficient structure.

Params PSNR↑ SSIM↑ LPIPS↓
(2D+3D) 107M 32.24 0.9158 0.04725
(3D+3D) 132M 32.31 0.9163 0.04704

Table 4. Ablation for branch selection.



Ablation of SSIM results of different frames within
a frame group. In Table 5, we explore the performance
change of each frame within the frame group after differ-
ent architectures coupled with the proposed GCConv. The
experiments utilize the Z = 8 ablation experiment weights
from the main paper. As can be seen from the table, the ad-
dition of GCConv to both the baseline and the KTC archi-
tecture significantly improves the performance of the first
two frames within the frame group, thus drastically reduc-
ing the performance imbalance between frames. Experi-
ments demonstrate that the performance of different frames
can be significantly balanced by allowing frames within a
frame group to interact bidirectionally.

Baseline + GCConv KTC + GCConv
Frame 1 0.8923+0.0089 0.9027+0.0066
Frame 2 0.8986+0.0063 0.9103+0.0064
Frame 3 0.9191+0.0014 0.9203-0.0012
Frame 4 0.9056+0.0007 0.9111+0.0008

Max margin 0.0268-0.0075 0.0176-0.0078

Table 5. Ablation of SSIM results of different frames within a
frame group. The experiments utilize the Z = 8 ablation exper-
iment weights from the main paper. The results are tested using
17-frame 256×256 resolution videos. The red/gray values indi-
cate the change in performance of the baseline or KTC architec-
ture after using GCConv. Max margin: Maximum performance
difference between frames within a frame group.

3.6. Analysis
Visualization of latent channels. In Fig. 10, we visu-
alize the features of each channel in the latent space using
Z = 8 IV-VAE model. Specifically, a frame group is com-
pressed into a single frame after the encoder, and the feature
map Fi for each channel i(1 ≤ i ≤ 8) in the latent space is
normalized by the following equation:

(Fi−
max(Fi) +min(Fi)

2
)× 2

max(Fi)−min(Fi)
. (6)

As shown in Fig. 10, we choose a simple motion scene
to better analyze the role of the different latent channels,
where the position of a fruit undergoes a longitudinal move-
ment with the camera motion. The feature maps (1-4) gen-
erated by the 2D branch are usually clearer and focus on
the information of the first frame of the frame group, while
the feature maps generated by the 3D branch (5-8) are very
blurry and contain information about the motion of multiple
frames. This phenomenon is consistent with the description
in the methodology, where the 2D branch focuses on the
spatial information of the key frame (first frame) and the
3D branch focuses on the overall motion information.

Encoding and decoding time. We report the time of
encoding and decoding by different methods on a 17-frame
720P video. The results are shown in Table 6. The proposed

IV-VAE achieves the minimum reconstruction time, but due
to not exploring more on the model variants, we do not per-
form as well as OD-VAE in terms of encoding time. On the
Z = 16 model comparison, we have a very large advantage
over CogX-VAE, both in terms of reconstruction quality and
reconstruction time. In addition, we note that IV-VAE has
only 45% parameters and 60% computation compared to
OD-VAE, but the reconstruction time is somewhat long be-
cause of the inefficiency of the architecture. Therefore, in
future work, we will further explore more efficient model
variants and optimize the code to reduce the encoding and
decoding time.

Method Input: A 17-frame 1280×720 Video
Enc. time Dec. time All time

CV-VAE [12] 1.9s 3.5s 5.4s
OS-VAE [3] 1.2s 2.6s 3.8s
OD-VAE [2] 0.9s 2.9s 3.8s

CogX-VAE [11] 2.1s 4.2s 6.3s
IV-VAE (Cache) 1.3s 2.0s 3.3s

Table 6. Encoding and decoding time on one A800 GPU.
Enc.:Encoding, Dec.:Decoding.

Applying GCConv to OD-VAE. We replace all
causal convolutions with the proposed GCConvs based on
pre-trained OD-VAE and fine-tune it for 200K steps, which
not only achieves a 0.017 SSIM gain but also leads to a more
balanced performance as shown in Fig. 1. Experiments ver-
ify that the proposed GCConv can effectively balance the
performance between frames.

Figure 1. Applying GCConv to OD-VAE. Results are measured
on Kinetics-600.

Unselected frames. We visualized the reconstruction
results of the last unselected frame in the KTC architecture
as shown in Fig. 2. We note that these unselected frames
can still reconstruct the video albeit with color deviation
and ghosting. This is because the convolution weights for
outputting the unselected frames are inherited from the in-
flated pre-trained image VAE weights and are not updated
afterwards due to the lack of direct constraints.

4. Limitation and Future Work
The overall architecture of the proposed method is still
based on UNet following SD image VAE without explor-



Figure 2. Unselected frame reconstruction result.

ing other architectures. Video VAE faces more unique dif-
ficulties compared to image VAE, e.g., as the video reso-
lution increases, the need for receptive field increases for
video VAE. While the classical UNet lacks a global recep-
tive field, in addition, the number of spatial downsampling
layers of video VAE is usually aligned with the spatial com-
pression ratio, which also limits the receptive field of video
VAE. Therefore, it is worthwhile to consider introducing
new architectures such as Dit or Mamba into video VAE in
future work.

We believe that the proposed KTC architecture can play
a more significant role in the video VAE of a larger latent
channel number, and some works [9] on image VAE have
attempted to train a VAE with a large latent channel num-
ber (e.g., 32). In this case, the KTC architecture appears to
be quite promising. In addition, the proposed GCConv also
shows more potential in video VAEs with a larger tempo-
ral compression rate (e.g., 8×), and we think that bidirec-
tional interactions can effectively improve the performance
of the model especially at a high temporal compression rate.
Therefore, in future work, we would like to explore a larger
latent channel number and a larger temporal compression
rate for video VAE using the proposed IV-VAE.
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Figure 3. Reconstruction results for long sequences. Frame 0 represents the first image frame. Areas of poor reconstruction are circled.
(Zoom-in for best view)



Figure 4. Reconstruction results under a faster motion (frame interval of 3). Reconstruction problems are listed for different frames.



Figure 5. Face reconstruction. Rough and mismatched areas in CogX-VAE reconstruction results are circled.



Figure 6. Textual reconstruction. (Zoom-in for best view)



Figure 7. Reconstruction results when text suddenly appears in the video frame. Both frames belong to the same frame group. Areas
with anomalies in the reconstruction results are circled.



Figure 8. Latte’s generation results using different video VAEs after training on the SkyTimelapse dataset.



Figure 9. Latte’s generation results using different video VAEs after training on the FaceForensics dataset.



Figure 10. Visualization of latent channels using Z = 8 model. A frame group (4 frames) is mapped as one frame of 8 channels of
features in the latent space. In the left figure, the positions of the fruits are labeled, indicating that the positions of the fruits are different in
different frames. In the right figure, serial numbers 1 to 4 are the features of the four latent channels output from the 2D branch, and 5 to 8
are the features of the four latent channels output from the 3D branch.


