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In this document, we provide dataset details, more ab-
lative experimental results, more qualitative visualization,
and the detailed introduction of first-order logic. It is orga-
nized as follows:
• § A Summary of data split statistics
• § B More ablative experimental results
• § C More qualitative visualization
• § D First-order logic

A. Summary of data split statistics
We follow the common data splits of the three used datasets,
i.e., CGQA [3], UT-Zappos50K [5] and MIT-States [2].
Please see Table 1 for details.

Table 1. Summary of data split statistics.
Composition Train Val Test

Datasets |A| |O| |A| × |O| |Cs| |X | |Cs| / |Cu| |X | |Cs| / |Cu| |X |
CGQA 413 674 278362 5592 26920 1252 / 1040 7280 888 / 923 5098

UT-Zappos50K 16 12 192 83 22998 15 / 15 3214 18 / 18 2914
MIT-States 115 245 28175 1262 30338 300 / 300 10420 400 / 400 12995

B. More ablative experimental results
We supplement more ablative experimental results with
CSP and Troika for comprehensive evaluation of LOGICZSL,
including key component analysis (Table 2), aggregation
coefficient (Table 3 and Table 5), the importance of logic-
induced loss (Table 4 and Table 6), the robustness and
efficiency in Table 7. In particular, the results of cross-
domain (i.e., training on UT-Zappos and testing on sketch
UT-Zappos) and cross-task experiments (i.e., training on
CZSL and testing on ZSL) highlight the superior robustness
of our method against data distribution shift than baselines.

C. More qualitative visualization
We present more qualitative results from CGQA [3], UT-
Zappos50K [5] and MIT-States [2] in Fig. 1. We observe
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Table 2. Ablative experimental results of logic rules on CGQA [3]
with base models, i.e., CSP and Troika.

Logic Rules CGQA [3]Method oi-logic oe-logic ae-logic AUC↑ HM↑ Seen↑ Unseen↑

Logic-
CSP

6.2 20.5 28.8 26.8
7.4 22.7 31.1 28.3
7.1 22.0 30.5 27.8
7.1 22.0 30.6 27.8
7.7 23.1 31.9 28.9

Logic-
Troika

12.4 29.4 41 35.7
14.3 32.2 42.2 39.0
15.1 33.1 43.7 39.5
14.2 32.1 42.1 38.8
15.3 33.3 44.4 39.4

Table 3. Aggregation coefficient q in Eq.3 of manuscript for ∀ on
CGQA [3] with base models, i.e., CSP and Troika.

Aggregation CGQA [3]Method Coefficient q AUC↑ HM↑ Seen↑ Unseen↑

Logic-
CSP

baseline (w/o logic rules) 6.20 20.50 28.80 26.80
1.0 7.62 22.99 32.02 28.58
3.0 7.62 22.99 31.99 28.58
5.0 7.63 23.02 31.99 28.67
8.0 7.04 21.86 30.55 27.62

Logic-
Troika

baseline (w/o logic rules) 12.40 29.40 41.00 35.70
1.0 15.14 33.22 44.26 38.81
3.0 15.32 33.43 44.21 39.51
5.0 15.34 33.30 44.41 39.42
8.0 15.20 33.21 43.75 39.95

Table 4. Importance of logic-induced loss in Eq.13 of manuscript
on CGQA [3] with base models, i.e., CSP and Troika.

CGQA [3]Method Importance of LG AUC↑ HM↑ Seen↑ Unseen↑

Logic-
CSP

baseline (w/o logic rules) 6.20 20.50 28.80 26.80
s1 7.64 22.91 31.79 28.93
s2 7.63 23.02 31.99 28.67
s3 7.65 23.05 31.92 28.85

Logic-
Troika

baseline (w/o logic rules) 12.40 29.40 41.00 35.70
s1 14.25 32.21 42.03 38.90
s2 15.34 33.30 44.41 39.42
s3 15.24 33.23 44.31 39.16

that our proposed LOGICZSL is capable of predicting ac-
curate results where base models (i.e., CSP and Troika)
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Figure 1. More visual comparisons between CSP [4], Troika [1] and our method LOGICZSL on CGQA [3], UT-Zappos50K [5], MIT-
States [2]. Green denotes the right prediction and red denotes the wrong prediction.

Figure 2. Failure cases of prediction results

Table 5. Aggregation coefficient q in Eq.3 of manuscript for ∀ on
MIT-States [2] with base models, i.e., CSP and Troika.

Aggregation MIT-States [2]Method Coefficient q AUC↑ HM↑ Seen↑ Unseen↑

Logic-
CSP

baseline (w/o logic rules) 19.40 36.30 46.60 49.90
1.0 20.56 37.42 48.45 50.99
3.0 20.55 37.40 48.40 51.02
5.0 20.59 37.42 48.49 51.00
8.0 20.31 37.38 47.10 51.74

Logic-
Troika

baseline (w/o logic rules) 22.10 39.30 49.00 53.00
1.0 23.35 40.49 50.84 53.87
3.0 23.31 40.33 50.76 53.92
5.0 23.34 40.44 50.71 53.97
8.0 22.74 39.49 50.34 53.39

make mistakes. For instance, base models struggle to distin-
guish between similar objects like “house” and “town”, and
have difficulty in recognizing the accurate attribute, such as
“folded”, “ancient”. By exploring the logic-induced repre-
sentation which resolves the semantic relationship limita-
tion, LOGICZSL can correct the wrong predictions of base

Table 6. Importance of logic-induced loss in Eq.13 of manuscript
on MIT-States [2] with base models, i.e., CSP and Troika.

MIT-States [2]Method Importance of LG AUC↑ HM↑ Seen↑ Unseen↑

Logic-
CSP

baseline (w/o logic rules) 19.40 36.30 46.60 49.90
s1 20.60 37.38 48.49 51.03
s2 20.59 37.42 48.49 51.00
s3 20.52 37.38 48.28 51.02

Logic-
Troika

baseline (w/o logic rules) 22.10 39.30 49.00 53.00
s1 23.22 40.35 50.55 53.84
s2 23.35 40.49 50.84 53.87
s3 23.18 40.31 50.55 53.89

Table 7. Robustness and efficiency of proposed method.
Cross-domain Cross-task Training Time MemoryMethod Seen↑ Unseen↑ Accuracy ↑ min/epoch G

Troika 29.6 32.5 54.6 10.0 61.8
Logic-Troika 30.7 33.2 57.6 10.5 65.0

models. These results demonstrate the effectiveness of our
proposed logic-induced learning framework. In addition,
we also illustrate some failure cases in Fig. 2, which can be
attributed to the complex visual distractions and extremely
small targets.



D. First-order logic
First-order logic, also known as first order predicate logic,
is a formal language for expressing knowledge. There are
two basic elements for first-order logic: predicate and vari-
able. A predicate v (e.g., in Eq.4 of manuscript) denotes the
name of a property or relation verification function v(x),
also known as atom, which returns true or false, where x
is a variable. For example, dog(x) is used to verify the
relation: “x is a dog”. An atom (e.g., dog(x)) is called a
ground atom (e.g., dog(x1)) if all the variables of it are in-
stantiated with constants (e.g., x1). For instance, if “x1 is a
dog”, then dog(x1) returns true, otherwise the result would
be false. A first-order rule is defined by predicate, variable
and a set of logical connectives, including connectives (e.g.,
negation ¬, conjunction ∧, disjunction ∨, implication ⇒)
and quantifiers (i.e., ‘for all’ ∀ or ‘there exists’ ∃). The de-
fined first-order logic rule can be grounded on data if all the
variables in the logic rule are instantiated with constants.
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