LogiCzsl: Exploring Logic-induced Representation for Compositional Zero-shot Learning Supplementary Material

Peng Wu¹, Xiankai Lu¹, Hao Hu¹, Yongqin Xian³, Jianbing Shen⁴, Wenguan Wang² ¹Shandong University, ² ReLER, CCAI, Zhejiang University, ³ Google, ⁴SKL-IOTSC, CIS, University of Macau https://github.com/Pieux0/LOGICZSL

In this document, we provide dataset details, more ablative experimental results, more qualitative visualization, and the detailed introduction of first-order logic. It is organized as follows:

- § A Summary of data split statistics
- § B More ablative experimental results
- § C More qualitative visualization
- § D First-order logic

A. Summary of data split statistics

We follow the common data splits of the three used datasets, *i.e.*, CGQA [3], UT-Zappos50K [5] and MIT-States [2]. Please see Table 1 for details.

Table 1. Summary of data split statistics.

	Composition		Train		Val		Test		
Datasets	$ \mathcal{A} $	$ \mathcal{O} $	$ \mathcal{A} imes \mathcal{O} $	$ C_{\rm s} $	$ \mathcal{X} $	$ \mathcal{C}_{s} $ / $ \mathcal{C}_{u} $	$ \mathcal{X} $	$ \mathcal{C}_{\mathrm{s}} $ / $ \mathcal{C}_{\mathrm{u}} $	$ \mathcal{X} $
CGQA	413	674	278362	5592	26920	1252 / 1040	7280	888/923	5098
UT-Zappos50K	16	12	192	83	22998	15/15	3214	18/18	2914
MIT-States	115	245	28175	1262	30338	300 / 300	10420	400 / 400	12995

B. More ablative experimental results

We supplement more ablative experimental results with CSP and Troika for comprehensive evaluation of LOGICZSL, including key component analysis (Table 2), aggregation coefficient (Table 3 and Table 5), the importance of logic-induced loss (Table 4 and Table 6), the robustness and efficiency in Table 7. In particular, the results of cross-domain (*i.e.*, training on UT-Zappos and testing on sketch UT-Zappos) and cross-task experiments (*i.e.*, training on CZSL and testing on ZSL) highlight the superior robustness of our method against data distribution shift than baselines.

C. More qualitative visualization

We present more qualitative results from CGQA [3], UT-Zappos50K [5] and MIT-States [2] in Fig. 1. We observe

Table 2. Ablative experimental results of logic rules on CGQA [3]
with base models, <i>i.e.</i> , CSP and Troika.

Mathad	Mathad Logic Rule		les CGQA [3]			QA [3]	
Method	oi-logic	oe-logic	ae-logic	AUC↑	HM↑	Seen↑	Unseen↑
	X	X	Х	6.2	20.5	28.8	26.8
Logio	1	Х	X	7.4	22.7	31.1	28.3
CSD	Х	1	Х	7.1	22.0	30.5	27.8
CSP	X	X	1	7.1	22.0	30.6	27.8
	1	1	✓	7.7	23.1	31.9	28.9
	X	Х	X	12.4	29.4	41	35.7
Logic- Troika	1	Х	Х	14.3	32.2	42.2	39.0
	X	1	Х	15.1	33.1	43.7	39.5
	X	Х	1	14.2	32.1	42.1	38.8
	1	1	1	15.3	33.3	44.4	39.4

Table 3. A	Aggregation	coefficient	q in .	Eq.3 o	f manus	cript for	: \ (on
CGQA [3] with base i	models, i.e.	, CSF	and T	Troika.			

Method	Aggregation	CGQA [3]				
withiou	Coefficient q	$\begin{tabular}{ c c c c c c c } \hline CGQA [3] \\ \hline AUC\uparrow & HM\uparrow & Seen\uparrow & U \\ \hline & HM\uparrow & Seen\uparrow & U \\ \hline & Seen\uparrow & C \\ \hline & 1.5 \\ \hline &$	Unseen↑			
	baseline (w/o logic rules)	6.20	20.50	28.80	26.80	
Logia	1.0	7.62	22.99	32.02	28.58	
Logic-	3.0	7.62	22.99	31.99	28.58	
CSF	5.0	7.63	23.02	31.99	28.67	
	8.0	7.04	21.86	30.55	27.62	
	baseline (w/o logic rules)	12.40	29.40	41.00	35.70	
Logia	1.0	15.14	33.22	44.26	38.81	
Troileo	3.0	15.32	33.43	44.21	39.51	
пока	5.0	15.34	33.30	44.41	39.42	
	8.0	15.20	33.21	43.75	39.95	

Table 4. Importance of logic-induced loss in Eq.13 of manuscript on CGQA [3] with base models, *i.e.*, CSP and Troika.

Mathad	Importance of LC	CGQA [3]			
Method	Importance of LG	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Unseen↑		
	baseline (w/o logic rules)	6.20	20.50	28.80	26.80
Logic-	s_1	7.64	22.91	31.79	28.93
CSP	s_2	7.63	23.02	31.99	28.67
	s_3	7.65	23.05	31.92	28.85
	baseline (w/o logic rules)	12.40	29.40	41.00	35.70
Logic-	s_1	14.25	32.21	42.03	38.90
Troika	s_2	15.34	33.30	44.41	39.42
	s_3	15.24	33.23	44.31	39.16

that our proposed LOGICZSL is capable of predicting accurate results where base models (*i.e.*, CSP and Troika)

^{*}Corresponding author: Xiankai Lu.

Figure 1. More visual comparisons between CSP [4], Troika [1] and our method LOGICZSL on CGQA [3], UT-Zappos50K [5], MIT-States [2]. Green denotes the right prediction and red denotes the wrong prediction.

Figure 2. Failure cases of prediction results

Table 5. A	Aggregation	coefficient	q in Eq.3	of manuscript	tor \forall on
MIT-State	s [2] with b	ase models,	i.e., CSP	and Troika.	

Mathad	Aggregation		MIT-S	States [2]	
Wiethou	Coefficient q	AUC↑	HM↑	Seen↑	Unseen↑
	baseline (w/o logic rules)	19.40	36.30	46.60	49.90
Logia	1.0	20.56	37.42	48.45	50.99
Logic-	3.0	20.55	37.40	48.40	51.02
CSP	5.0	20.59	37.42	48.49	51.00
	8.0	20.31	37.38	47.10	51.74
	baseline (w/o logic rules)	22.10	39.30	49.00	53.00
Logia	1.0	23.35	40.49	50.84	53.87
Logic-	3.0	23.31	40.33	50.76	53.92
пока	5.0	23.34	40.44	50.71	53.97
	8.0	22.74	39.49	50.34	53.39

make mistakes. For instance, base models struggle to distinguish between similar objects like "house" and "town", and have difficulty in recognizing the accurate attribute, such as "folded", "ancient". By exploring the logic-induced representation which resolves the semantic relationship limitation, LOGICZSL can correct the wrong predictions of base

Table 6. Importance of logic-induced loss in Eq.13 of manuscript on MIT-States [2] with base models, *i.e.*, CSP and Troika.

		MIT-States [2]				
Method	Importance of LG	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Seen↑	Unseen↑		
	baseline (w/o logic rules)	19.40	36.30	46.60	49.90	
Logic-	s_1	20.60	37.38	48.49	51.03	
CSP	s_2	20.59	37.42	48.49	51.00	
	s_3	20.52	37.38	48.28	51.02	
	baseline (w/o logic rules)	22.10	39.30	49.00	53.00	
Logic-	s_1	23.22	40.35	50.55	53.84	
Troika	s_2	23.35	40.49	50.84	53.87	
	s_3	23.18	40.31	50.55	53.89	

Table 7. Robustness and efficiency of proposed method.

Method	Cross-domain		Cross-task	Training Time	Memory
wichiou	Seen↑	Unseen↑	Accuracy ↑	min/epoch	G
Troika	29.6	32.5	54.6	10.0	61.8
Logic-Troika	30.7	33.2	57.6	10.5	65.0

models. These results demonstrate the effectiveness of our proposed logic-induced learning framework. In addition, we also illustrate some failure cases in Fig. 2, which can be attributed to the complex visual distractions and extremely small targets.

D. First-order logic

First-order logic, also known as first order predicate logic, is a formal language for expressing knowledge. There are two basic elements for first-order logic: predicate and variable. A predicate v (e.g., in Eq.4 of manuscript) denotes the name of a property or relation verification function v(x), also known as *atom*, which returns true or false, where xis a *variable*. For example, dog(x) is used to verify the relation: "x is a dog". An *atom* (e.g., dog(x)) is called a ground atom (e.g., $dog(x_1)$) if all the variables of it are instantiated with *constants* (e.g., x_1). For instance, if " x_1 is a dog", then dog(x_1) returns true, otherwise the result would be false. A first-order rule is defined by predicate, variable and a set of logical connectives, including connectives (e.g., negation \neg , conjunction \land , disjunction \lor , implication \Rightarrow) and quantifiers (*i.e.*, 'for all' \forall or 'there exists' \exists). The defined first-order logic rule can be grounded on data if all the variables in the logic rule are instantiated with constants.

References

- [1] Siteng Huang, Biao Gong, Yutong Feng, Yiliang Lv, and Donglin Wang. Troika: Multi-path cross-modal traction for compositional zero-shot learning. In *CVPR*, 2024. 2
- [2] Phillip Isola, Joseph J Lim, and Edward H Adelson. Discovering states and transformations in image collections. In *CVPR*, 2015. 1, 2
- [3] Muhammad Ferjad Naeem, Yongqin Xian, Federico Tombari, and Zeynep Akata. Learning graph embeddings for compositional zero-shot learning. In CVPR, 2021. 1, 2
- [4] Nihal V Nayak, Peilin Yu, and Stephen H Bach. Learning to compose soft prompts for compositional zero-shot learning. In *ICLR*, 2023. 2
- [5] Aron Yu and Kristen Grauman. Fine-grained visual comparisons with local learning. In *CVPR*, 2014. 1, 2