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Supplementary Material

Overview
The appendix presents more details and additional results
not included in the main paper due to page limitation. The
list of items included are:

• Potential Limitation and Future Work in §A;
• Extended Task Definition in §B;
• Framework Architecture in §C;
• Detailed Training Procedure in §D;
• Detailed System Inference in §E;
• Dataset Specification in §F;
• Detailed Experimental Implementations in §G;
• Additional Experiments in §H.

A. Potential Limitation and Future Work
A.1. Potential Limitations of 4D-LLM
Despite its promising performance, 4D-LLM faces certain
limitations. First, the dataset annotations used for training
and evaluation may suffer from incomplete labeling or anno-
tation errors, which may hinder the model’s ability to learn
accurate representations and achieve optimal performance.
These limitations in the dataset may result in missed detec-
tions or incorrect relationships within the generated scene
graphs, reducing the reliability of the model in practical ap-
plications. The proposed approach, chained inference, which
leverages the inherent reasoning capabilities of LLMs, has
shown the potential to alleviate this issue by improving the
consistency and robustness of the model’s predictions.

Another potential limitation is the model’s capacity to
handle extreme long-term 4D scenes. Understanding and
processing extended temporal sequences in dynamic 4D en-
vironments remains challenging due to the complexity of
capturing and reasoning about long-term dependencies and
interactions. Current models, including 4D-LLM, may strug-
gle to maintain coherence and accuracy in such scenarios,
which is critical for tasks requiring an understanding of pro-
longed events or activities, such as surveillance or continuous
monitoring.
A.2. Future Works
Several directions can be pursued to enhance and expand
the applications of 4D-LLM. One significant application
area is robotics, where processing and understanding rich
4D scene information could greatly enhance robotic per-
ception, decision-making, and task execution. For instance,
by leveraging 4D-LLM, robots could gain a comprehensive
understanding of their surrounding environments, enabling
them to make informed decisions and adapt their actions in
real time. This capability is particularly relevant for tasks

such as autonomous navigation in dynamic and complex en-
vironments, where accurate scene understanding is essential
for planning and executing tasks with high precision and
safety.

Beyond robotics, 4D-LLM holds potential in virtual envi-
ronments, such as serving as an autonomous agent in video
games like GTA. Unlike traditional task completion sys-
tems that passively respond to predefined inputs, 4D-LLM
could actively perceive and interpret its surroundings, dy-
namically interacting with the environment to achieve objec-
tives. This transition from passive to active perception and
decision-making highlights a shift toward greater autonomy
and adaptability in AI systems.

person-48 talking to person-4

Ground-Truth

Input 4D Scene

Figure 1. Input and output of the 4D panoptic scene graph (4D-
PSG) generation task.

B. Extended Task Definition
As shown in Fig. 1, given a 4D scene, specifically repre-
sented as a sequence of RGB-D frames I ∈ RT×H×W×4,
where T denotes the number of frames and each frame has di-
mensions H×W ×4, our objective is to generate a dynamic
panoptic SG G = {O,M,R}. The RGB-D sequence can
also be treated as two parallel sequences: RGB images and
single-channel depth images. Here, O = {on}Nn=1 are the
set of objects present in the scene, for example, in Fig. 1, the
object, “person-48”, “person-4”, “road-barrier-295”, “wall-
1004”, etc. M = {mn}Nn=1 denotes the corresponding
binary mask tubes, where mi ∈ {0, 1}T×H×W tracks the
spatial extent of object oi over time T , as illustrated by the
color-coded regions in Fig. 1. The relation set R = {rk}Kk=1

defines interactions between objects, with each rk linking a
subject and an object through a predicate class over a specific
period (ts, te). For instance, the relation, “person-48 talk-
ing to person-4”, is recognized, with its temporal duration
represented by the length of the corresponding color block.

C. Framework Architecture
Here, we detailed the framework architecture of the three
estimators employed in the spatial-temporal 2D-to-4D tran-



Input 2D Image

Image 
Encoder ProjectCNN

Depth Estimator

Predicted depth 
features2D scene features

Figure 2. The framework of Depth Estimator.
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Figure 3. The framework of RGB Temporal Estimator.

scending mechanism.

Depth Estimator. As depicted in Fig. 2, given an input 2D
image I ∈ RH×W×3, an image encoder is to model the in-
put image and yield 2D scene features HRGB ∈ R

H
p ×W

p ×d,
where p represents the patch size, d is the feature dimension-
ality. Then, we implement the convolution (CNN) with a
3× 3 kernel and then a projector using 1× 1 convolutions
to project the input representation to match the dimension of
ground-truth depth features HD.

RGB Temporal Estimator. As shown in Fig. 3, given
an input 2D image I ∈ RH×W×3, an image encoder
is to model the input image and yield 2D scene features
HRGB ∈ R

H
p ×W

p ×d, where p represents the patch size, d is
the feature dimensionality. Inspired by [19], we design the
RGB Temporal Estimator Frte as an autoregressive trans-
former, which is applied to predict the temporal features.
The masked multi-head attention, combined with the fact
that the output features are offset by one position, ensures
that the predictions for position j can depend only on the
known outputs at positions < j. This autoregressive mecha-
nism enables effective modeling of temporal dependencies.
The probabilistic formulation is as follows:

p(ĤT ,HRGB , Frte) =
∏
j

Frte(Ĥ
T
j |ĤT

<j ,H
RGB), (1)

where ĤT
j denotes the predicted temporal features at step j,

and ĤT
<j refers to the features predicted for previous steps.

Depth Temporal Estimator. As shown in Fig. 4, given
an input depth image I ∈ RH×W×1, a depth encoder is
to model the input image and yield depth features HD ∈
R

H
p ×W

p ×d, where p represents the patch size, d is the feature
dimensionality. Similarly, the Depth Temporal Estimator
Fdte employs the same architecture but different parameters

M
ask

ed
 M

u
ltih

ea
d
 

A
tte

n
tio

n

A
d
d
 &

 N
o
rm

M
u
ltih

ead
 

A
tte

n
tio

n

A
d

d
 &

 N
o

rm

F
F

N

A
d
d
 &

 N
o
rm

v
k

q
v

k

q

Depth Temporal Estimator

predicted depth 
temporal features

predicted depth 
temporal features

Input Depth

Depth 
Encoder

Figure 4. The framework of Depth Temporal Estimator.

to predict the depth temporal features:

p(ĤDT ,HD, Fdte) =
∏
j

Fdte(Ĥ
DT
j |ĤDT

<j ,HD). (2)

D. Extended Training Framework
This section details the training process, including the
datasets, quantities, and parameters utilized at each step.

▶ Step 1: 4D Scene Perception Initiation Learning. The
training begins with 4D Scene Perception Initiation Learning,
designed to establish a foundational understanding of 4D
scenes in the LLM for generating 4D-PSG. In this step,
we utilize the PSG4D dataset to train the 4D-LLM. The
input comprises 4D scenes, while the supervision signals
are the ground-truth 4D-PSGs, which include textual scene
graph triplets and corresponding object mask tubes. The
optimization is performed according to Eq.(1).

▶ Step 2: 2D-to-4D Scene Transcending Learning. In
this step, we focus on 2D-to-4D Scene Transcending Learn-
ing to enable the transition from 2D to 4D scene. This
process is further divided into three substeps:

1) RGB-to-Depth Transcending Learning: We utilize
200K depth estimation samples from the DIML dataset [2]
to train the depth estimator. The input comprises 2D RGB
images, with corresponding ground-truth depth images pro-
viding supervision. The optimization follows Eq. (2).

2) RGB Temporal Learning: For temporal learning, we
employ 288K video data from the AG dataset. The first
frame of each video serves as the input 2D RGB image, and
the subsequent frames are used as ground-truth supervision
for optimizing the RGB Temporal Estimator, guided by Eq.
(4).

3) Depth Temporal Learning: We leverage depth se-
quences from the PSG4D dataset. Specifically, the first depth
image in each sequence is used as the input, and the remain-
ing depth images in the sequence are utilized as ground-truth
for optimizing the Depth Temporal Estimator, following Eq.
(5).

These three substeps are independent and can be con-
ducted concurrently, ensuring an efficient training process
for the 2D-to-4D transcending mechanism.



▶ Step 3: Pseudo 4D Scene Transfer Initiation Learn-
ing. In this step, we leverage 3K samples from the PSG4D
dataset for learning. Specifically, each 4D scene in the train-
ing data is firstly decomposed into three components: 3D
scenes, video sequences (i.e., RGB sequences), and depth
sequences. These components are then used to train the 2D-
to-4D Scene Transcending Module, explicitly optimizing
the Depth Estimator, RGB Temporal Estimator, and Depth
Temporal Estimator. Secondly, the pseudo-4D scenes gener-
ated using the trained 2D-to-4D transcending module serve
as input to the 4D-LLM, which predicts the final 4D-PSGs,
i.e., SG triplets and mask tubes. Ground-truth 4D-PSGs are
employed as supervision to optimize the 4D-LLM further.
The overall loss function integrates these components, as
detailed in Eq. (7), ensuring cohesive optimization across
the whole framework.

▶ Step 4: Large-scale Visual Scene Transfer Learning.
In this step, we leverage a large-scale dataset consisting of
150K 2D-SG samples, including VG [9] and PSG [20], to
train the 4D-LLM. The process begins by feeding 2D scenes
into the 2D-to-4D Scene Transcending Module, transform-
ing the input into representations suitable for the 4D-LLM.
The 4D-LLM then interprets these representations and gen-
erates the corresponding 2D-PSGs. The predicted 2D-PSGs
are supervised using the ground-truth 2D-PSGs, ensuring
accurate SG generation.

▶ Step 5: 4D Scene Fine-tuning. To ensure optimal
model performance, we incorporate an additional training
step focused on 4D scene fine-tuning. In this step, we re-
peat the training process outlined in Step 1 using the P4G4D
dataset, allowing the model to further refine its understanding
of 4D scenes and enhancing its ability to generate accurate
4D-PSGs.

E. System Inference
To improve the quality and address out-of-vocabulary (OOV)
issues in 4D-PSG generation, we employ a chained infer-
ence mechanism during the inference phase. The inference
process is divided into four sequential stages:

• Inference stage 1: Object Description and Catego-
rization. In this stage, the input 4D scene is analyzed
to identify all objects present. To handle OOV issues,
the LLM first generates detailed descriptions of each
object before assigning them specific categories, ensur-
ing a robust recognition, even for unseen or ambiguous
objects.

• Inference stage 2: Semantic Relation Identification.
Based on the identified objects, the LLM determines
which object pairs exhibit semantic relationships, es-
tablishing the foundation for constructing meaningful
scene graphs.

• Inference stage 3: Precise Relation Description. To
refine the semantic relationships, the LLM generates
predicates that offer precise and contextually relevant
descriptions of the interactions between object pairs.
This step avoids overly general or coarse-grained predi-
cates, ensuring a higher granularity and interpretability.

• Inference stage 4: Temporal Span Determination.
For object pairs with confirmed semantic relationships,
the model further infers the temporal span during which
these relationships are valid within the given 4D scene.

To enhance the model’s reasoning ability and comprehen-
sion of complex instructions, we employ in-context learning
throughout the chained inference process. Below, we detail
the prompts used to guide the LLM effectively.

Chained Scene Graph Inference

Input Data: 4D Scene, the duration
Instruction: You are a scene expert with professional
skills in generating an SG triplets sequence. You follow
these four detailed steps to ensure a logical, step-by-step
approach to SG generation:

Inference stage 1: Object Description and Categoriza-
tion. For each object in the scene, do not immediately
output its name. Instead, start by describing each object
in detail. Provide a description of each object based
on its appearance, shape, structure, and any unique
characteristics observed in the scene. After giving a
detailed description, assign a category to the object that
best fits the objects (e.g., “person”, “table”, “chair”, etc.).
Expected Output: (description, object1), · · ·

Inference stage 2: Semantic Relation Identification.
Based on the identified objects, analyze which pairs of
objects may have semantic relations. Consider spatial
positioning, interactions, and any logical connections that
might exist between them. Identify only pairs that have a
meaningful relationship, and briefly explain why these
pairs might be related.
Expected Output: (objecti, objectj), · · ·

Inference stage 3: Precise Relation Description For
each object pair identified in Step 2, describe the exact
nature of the relation between the two objects as precisely
as possible. Use clear, concise language to specify the
relation type (e.g., ”sitting on,” ”holding,” ”near,” etc.)
and provide additional context if necessary to ensure the
relation is unambiguous.
Expected Output: (objecti, relationk objectj), · · ·

Inference stage 4: Temporal Span Determination
For each identified relation, determine its duration or
time span. Indicate if the relation is continuous, occurs
intermittently, or exists only at a specific moment within
the scene. Use a numerical value for the duration, such as
a time interval (e.g., (0.1, 0.7) )
Expected Output: (objecti, relationk objectj , start time,
end time), · · ·

Final Output Format: For each object pair and relation,
generate SG triplets in the following format:
Expected Output: (objecti, relationk objectj , start time,
end time), · · ·



In-context Examples

[Example-1]
Input Data: 4D Scene , the duration

Inference stage 1: Object Description and Categoriza-
tion.
Object 1:
Description: A person wearing a white T-shirt, gray pants,
and black gloves. They are wearing a dark blue helmet
and appear to be running on a sandy field.
Category: Person
Object 2:
Description: A person wearing a green shirt, gray pants,
and a green baseball cap. They are holding a baseball
glove and appear to be positioned slightly behind Object
1.
Category: Person
Object 3:
Description: A green outfield area with a mix of trees in
the background.
Category: Field
Object 4:
Description: A sandy dirt area forming the base path of
the field. Category: Ground

Inference stage 2: Semantic Relation Identification.
(Person, Person) - The runner (Object 1) is running
toward the fielder (Object 2), indicating a potential play
interaction.
(Person, Ground) - The runner (Object 1) is running along
the base path (Object 3).
(Person, Ground) - The fielder (Object 2) is positioned on
or near the base path (Object 3).
(Ground, Field) - The Ground (Object 3) is part of the
larger field (Object 4).

Inference stage 3: Precise Relation Description
(Person 1, running toward, Person 2)
(Person 1, running along, Ground)
(Person 2, standing near, Ground)
(Ground, part of, Field)

Inference stage 4: Temporal Span Determination
(Person 1, running toward, Person 2, start time: 0.2, end
time: 0.8), (Person 1, running along, Ground, start time:
0.1, end time: 0.9), (Person 2, standing near, Ground, start
time: 0.0, end time: 1.0), (Ground, part of, Field, start
time: 0.0, end time: 1.0).

Final Output Format:
(Person 1, running toward, Person 2, 0.2, 0.8) (Person 1,
running along, Ground, 0.1, 0.9) (Person 2, standing near,
Ground, 0.0, 1.0) (Ground, part of, Field, 0.0, 1.0)

F. Dataset Specification

PSG4D. This dataset [21] contains 2 subsets: (a) PSG4D-
GTA selected from the SAIL-VOS 3D [6] dataset, contain-
ing contains 67 videos with an average length of 84 sec-
onds, amounting to 27,700 RGB-D images, 28.3 billion
point clouds, and comprises 35 object categories, and 43
relationship categories; (b) PSG4D-HOI from HOI4D [13]
dataset, including 2,973 videos with an average duration of
20 seconds, equating to 891,000 RGB-D images across 282
indoor scenes. This dataset includes 46 object categories and
15 object-object relationship categories.

Visual Genome (VG). We leverage the original VG
dataset [9] for training, which contains the 5,996 types of
objects, 1,014 types of predicates, and approximately 108k
images.

Panoptic Scene Graph (PSG). Filtered from COCO [11]
and VG datasets [9], the PSG dataset [20] contains 133
object classes, including things, stuff, and 56 relation classes.
This dataset has 46k training images and 2k testing images
with panoptic segmentation and scene graph annotation. We
follow the same data-processing pipelines from [20].

Action Genome (AG). AG [8] annotates 234,253 frame
scene graphs for sampled frames from around 10K videos,
based on the Charades dataset [15]. The annotations cover 35
object categories and 25 predicates. The overall predicates
consist of three types of predicates: attention, spatial, and
contracting.

DIML. DIML [2] comprises 2M color images and their
corresponding depth maps from a great variety of natural in-
door and outdoor scenes. The indoor dataset was constructed
using the Microsoft Kinect v2, while the outdoor dataset was
built using the stereo cameras (ZED stereo camera and built-
in stereo camera). We randomly select the 200K samples for
training.

G. Detailed Experimental Implementations
We employ Imagebind [4] as our 4D scene encoder. Simi-
larly, Imagebind applies the image, video decoder, and depth
encoder when performing the 2D-to-4D transfer learning.
The design of the aggregator utilized for fusing RGB and
depth features follows in [1]. The projector is implemented
as a 2-layer MLP. The LLM is instantiated with LLaMA2
[18] and fine-tuned using LoRA [5]. We initialize the mask
decoder with SAM2 [14] weights. The Depth Estimator
consists of a 3× 3 convolutional layer and a projector imple-
mented as a 1× 1 convolution layer to predict depth features.
Both the RGB Temporal Estimator and the Depth Temporal
Estimator use 6 transformer layers, with a 512-dimensional
embedding dimension, and 8 attention heads. The optimizer
is AdamW, with an inverse square root learning rate schedule
and warm-up steps. The training is carried out end-to-end
on 8 H100 80GB GPUs with distributed training based on
DeepSpeed. We summarize the training recipes for 4D-LLM
in Tab. 1.

H. Additional Experiments
Analyzing 4D-LLM. To comprehensively understand the
strengths and motivations behind 4D-LLM, it is essential to
analyze its design and advantages.

First, the decision to utilize LLMs stems from their inher-
ent richness in knowledge and emergent capabilities. LLMs
excel in handling diverse textual tasks due to their exten-
sive pretraining, which equips them with a robust internal



Configuration Step-1 Step-2 Step-3 Step-4
Subprocess-a Subprocess-b Subprocess-c

Optimizer AdamW AdamW AdamW AdamW AdamW AdamW
Precision bfloat16 bfloat16 bfloat16 bfloat16 bfloat16 bfloat16
Peak learning rate of LLM 5e-5 - - - 5e-5 5e-5
Peak learning rate of Visual Part 5e-4 2e-3 5e-3 2e-4 2e-4 5e-4
Weight Decay 0.05 0.1 0.1 0.1 0.05 0.05
Learning Rate Scheduler Cosine Cosine Cosine Cosine Cosine Cosine
LR Warmup Steps 500 500 500 500 500 500
Training Data PSG4D [21] DIML [2] AG [8] PSG4D [21] PSG4D [21] VG [9], PSG [20]

Table 1. Training recipes for 4D-LLM.

Method R@50 R@100 mR@50 mR@100

• Supervised learning
Motifs [22] 28.9 33.1 6.4 7.7
Motifs + CFA [10] - - 11.6 13.2
VCTree [17] 28.3 31.9 6.5 7.4
VETO [16] 26.1 29.0 7.0 8.1
• Zero-shot setting
4D-LLM (ours) 28.0 32.3 10.9 13.1

Table 2. Zero-shot 2D image SG generation performance on GQA
[7] dataset.

knowledge base. By leveraging this knowledge, 4D-LLM
is designed to achieve fine-grained perception across var-
ious scenes. This aligns with our goal of fully utilizing
the internal capabilities of LLMs to address the challenges
of 4D-PSG generation, ensuring precise understanding and
representation of complex environments.

Another key motivation for using an LLM-based ap-
proach is its potential to seamlessly integrate with down-
stream tasks. The actual utility of 4D-PSG lies in its ability
to serve broader applications, such as robotic navigation and
role-playing simulations. LLM-based models are particu-
larly advantageous in these scenarios due to their adaptability
and capacity for rapid transfer to new tasks. This flexibil-
ity ensures that 4D-LLM can maximize its impact beyond
PSG generation, making it an ideal candidate for practical
applications in dynamic, multimodal environments.

Experimentally, we have demonstrated that the LLM-
based 4D-PSG generation method achieves substantial per-
formance improvements over baseline models. These gains
validate the efficacy of incorporating LLMs into 4D scene
understanding tasks. Furthermore, by integrating our in-
novative 2D-to-4D visual scene transfer learning approach,
we observed additional performance enhancements. This
highlights the synergy between LLM-based architectures
and our novel methods, underscoring the effectiveness of
4D-LLM in advancing 4D scene graph generation and its
broader applicability.

The Generalization Capability. We further evaluate the
generalization capability of the proposed 4D-LLM by testing
its performance on SG generation tasks for 2D images and

Method
PSG4D-GTA PSG4D-HOI

R/mR@20 R/mR@50 R/mR@20 R/mR@50

PSG4DFormerone-stage
6.47 / 3.56 6.85 / 3.01 5.42 / 3.78 5.86 / 3.45

+ V 2→4-VST
4D-LLM w/o PSG4D 8.45 / 5.03 9.09 / 5.32 6.45 / 4.01 8.45 / 6.79

Table 3. Zero-shot analysis: The PSG4D dataset is excluded from
training, with only 4D data used for 2D-to-4D scene transcending.

Method With Constraint No Constraint

R@20 R@50 R@20 R@50

• Supervised learning
VCTree [17] 32.6 34.7 35.3 46.8
GPS-Net [12] 33.1 35.1 35.7 47.3
STTran [3] 34.1 37.0 36.2 48.8
• Zero-shot setting
4D-LLM (ours) 34.8 36.1 40.9 48.3

Table 4. Zero-shot 2D video SG generation performance on AG [8]
dataset.

videos. Specifically, we conduct zero-shot inference using
4D-LLM on the GQA [7] and AG [8] datasets, with results
presented in Tab. 2 and 4. Compared to fully supervised
baselines, our model achieves comparable performance in
2D image and video SG generation tasks. This demonstrates
the strong generalization ability of 4D-LLM, which not only
excels in 4D-PSG generation but also performs effectively
across other modalities. These findings further highlight
the model’s versatility in handling various SG generation
tasks, making it applicable to various scenarios, such as
robot navigation and other downstream tasks.

Detailed Example of Chained Inference Results. Here,
we show two detailed examples of chained inference results.

Detailed results of the chained inference process for
the example shown in Fig. 5

Input Data: 4D Scene , the duration

Inference stage 1: Object Description and Categoriza-
tion.
Object 1:
Description: A pair of hand tools with metal jaws and a



handle wrapped in a white material. It has a pivot point
that allows it to grip or manipulate objects.
Category: Pliers

Object 2:
Description: A rectangular, flat surface with a smooth,
glossy finish, decorated with an image of two reindeer and
text. Likely a piece of furniture used to hold items.
Category: Table

Object 3:
Description: A hand with a visible wrist, reaching toward
the pliers, likely indicating an interaction with them.
Category: Hand

Object 4:
Description: A soft cushion with a yellow fabric cover,
lying on a blue quilted surface with floral patterns.
Category: Pillow

Object 5:
Description: A large, cushioned seating area with a fabric
cover in a neutral color, placed near the table and likely
supporting the pillow. Category: Sofa

Inference stage 2: Semantic Relation Identification.
(Hand, Pliers) - The hand is reaching toward or interacting
with the pliers, suggesting a possible action or manipula-
tion.
(Pliers, Table) - The pliers are resting on the table surface,
indicating a positional relationship.
(Pillow, Table) - The pillow is lying on the table or
adjacent furniture, indicating a nearby or resting position.
(Sofa, Table) - The sofa is positioned near the table,
indicating a spatial relationship.

Inference stage 3: Precise Relation Description
(Hand, reaching toward, Pliers)
(Hand, picking up, Pliers)
(Hand, holding, Pliers)
(Pliers, resting on, Table)
(Pillow, lying near, Table)
(Sofa, positioned near, Table)

Inference stage 4: Temporal Span Determination
(Hand, reaching toward, Pliers, start time: 0.0, end time:
0.2)(Hand, picking up, Pliers, start time: 0.2, end time:
0.55)(Hand, holding, Pliers, start time: 0.5, end time: 1.0)
(Pliers, resting on, Table, start time: 0.0, end time: 0.4)
(Pillow, lying near, Table, start time: 0.0, end time: 1.0)
(Sofa, positioned near, Table, start time: 0.0, end time: 1.0)

Final Output Format:
(Hand, reaching toward, Pliers, 0.0, 0.2) (Hand, picking up,
Pliers, 0.2, 0.55) (Hand, holding, Pliers, 0.5, 1.0) (Pliers,
resting on, Table, 0.0, 0.4) (Pillow, lying near, Table, 0.0,
1.0) (Sofa, positioned near, Table, 0.0, 1.0)

Detailed results of the chained inference process for
the example shown in Fig. 6

Input Data: 4D Scene , the duration

Inference stage 1: Object Description and Categoriza-
tion.
Object 1:
Description: A person with short black hair, wearing a
blue shirt, yellow pants, and gloves, standing on or near a
railroad track, facing another person.

Category: Person

Object 2:
Description: A second person with short hair, wearing
a dark jacket, bending forward near the railroad track,
partially obscured in the foreground.
Category: Person

Object 3:
Description: A set of metal railroad tracks, extending
through the scene, with parallel rails and wooden ties.
Category: Railroad Track

Object 4:
Description: A low concrete barrier running alongside
the railroad track, separating the path from the track area.
Category: Road Barrier
Object 5:
Description: An industrial structure in the background,
with metal and concrete components, possibly part of a
factory or warehouse.
Category: Industrial Building

Object 6:
Description: There are irregularly shaped stones covering
the ground near the railway tracks.
Category: gravel

Inference stage 2: Semantic Relation Identification.
(Person 1, Person 2) - Person 1 and Person 2 are positioned
close to each other, suggesting a possible interaction or
confrontation.
(Person 1, Railroad Track) - Person 1 is standing near or
on the railroad track, indicating a spatial relationship.
(Person 2, Railroad Track) - Person 2 is positioned close
to the railroad track, indicating proximity.
(Person 1, Road Barrier) - The person is positioned near
the road barrier, suggesting a spatial relationship.
(Person 1, gravel) - The person is positioned on the gravel,
suggesting a spatial relationship.
(Railroad Track, Industrial Building) - The railroad track
leads towards or is located near the industrial building,
indicating spatial context.

Inference stage 3: Precise Relation Description
(Person 1, in front of, Person 2)
(Person 1, talking to, Person 2)
(Person 1, walking on, Gravel)
(Person 1, behind, Road Barrier)
(Person 1, walking alongside, Railroad Track)
(Person 2, walking alongside, Railroad Track)
(Railroad Track, near, Industrial Building)

Inference stage 4: Temporal Span Determination
(Person 1, in front of, Person 2, start time: 0.8, end time:
1.0)
(Person 1, talking to, Person 2, start time: 0.8, end time:
1.0)
(Person 1, walking on, Gravel, start time: 0, end time: 0.2)
(Person 1, behind, Road Barrier, start time: 0, end time:
0.2)
(Person 1, walking alongside, Railroad Track, start time:
0.2, end time: 0.8)
(Person 2, walking alongside, Railroad Track, start time:
0.8, end time: 1.0)
(Railroad Track, near, Industrial Building, start time: 0.1,
end time: 0.6)

Final Output Format:
(Person 1, in front of, Person 2, 0.8, 1.0),(Person 1, talking
to, Person 2, 0.8, 1.0), (Person 1, walking on, Gravel, 0,



Input 4D Scene

Mask Tubes Prediction w/ Chained Inference

hand reach toward toy car-1

toy car-1 placed on locker-1toy car-1 placed on locker-2
toy car-3 placed on locker-2

toy car-2 placed on locker-2
hand pick up toy car-1

locker-1 standing on ground
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Figure 5. A case illustrating the prediction of 4D-LLM on 4D-PSG

0.2), (Person 1, behind, Road Barrier, 0, 0.2), (Person 1,
walking alongside, Railroad Track, 0.2, 0.8), (Person 2,
walking alongside, Railroad Track, 0.8, 1.0), (Railroad
Track, near, Industrial Building, 0.1, 0.6)

More Visualizations. Fig. 5 provides an additional ex-
ample of predictions generated by 4D-LLM, illustrating its
ability to identify both semantic actions and fine-grained spa-
tial relationships within the scene. For instance, the model
successfully captures interactions such as “toy-car placed
on furniture-2”, “locker-1 standing on ground”. NNotably,
with the integration of the chained inference mechanism,
4D-LLM has significantly enhanced its ability to distinguish
finer object details, providing more robust performance in
differentiating “furniture” from “locker”. Additionally, the
chained inference mechanism enhances the model’s accu-
racy in recognizing key semantic relationships over extended
timeframes, further improving its performance in scenarios
involving long-duration activities. These results emphasize
the robust capability of 4D-LLM for a detailed and precise
understanding of complex 4D environments, validating its
effectiveness in generating high-quality 4D-PSGs.
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