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Supplementary Material

In this supplementary material, we first provide a notation
table for the method section in Tab. 4. Then, we offer Details
on Integrating PAMoE with several classical methods in
Sec. 8. Following that, we include Implementation Details
of using CONCH as a Classifier in Sec. 9. In Sec. 10, we
present Datasets and Implementation Details. In Sec. 11, we
provide Further Ablation Studies. Finally, in Sec. 12, we
showcase Experiments on More Tasks to further demonstrate
its effectiveness.

7. Notations

Table 4. Notation Table.

Symbol Description

n
The total number of patches from a input set
from a WSI.

N
The total number of patches generated from
all WSIs in certain cancer dataset.

Ñ
The number of patches randomly sampled
from the set of N patches.

H
The feature set of all WSIs in certain cancer
dataset.

H
The feature set randomly sampled from the
overall feature set.

S
Assignment score between experts and in-
stances.

S
Assignment probability (Softmax normalized
assignment score) between experts and in-
stances.

Ω The set of selected categories.

P The set of pre-extracted prior-based proto-
types.

m The total number of experts.
c The capacity factor of PAMoE.

8. Details on Integrating PAMoE
This section provides a detailed explanation of integrating
PAMoE with classical methods in Sec. 4.3.
TransMIL [36]. TransMIL is a classical transformer-based
method that uses Nystrom attention [40] to reduce the com-
putational complexity of self-attention. Additionally, it

propose the Pyramid Position Encoding Generator (PPEG)
module, which enables TransMIL to be aware of spatial in-
formation. Since TransMIL relies solely on self-attention
to explore the morphological interactions between patches
without an FFN layer following it, we inserted the PAMoE
module after the self-attention layer while keeping the other
modules unchanged. Since TransMIL employs the PPEG
module to model positional relationships among patches,
the arrangement of patches is meaningful. Therefore, the
all-zero features of discarded patches are all retained.
LongVit [39]. LongViT is a Vision Transformer (ViT) frame-
work designed to handle massive token inputs. It uses Di-
lated Attention to reduce the computational time and mem-
ory consumption associated with the massive number of
tokens during self-attention calculations. With LongViT,
we can build the ViT model with more parameters capable
of handling tens of thousands of tokens, even with limited
computational resources. We selected LongViT as one of
the baseline models to verify the performance of a ViT with
a larger-scale parameter set in WSI analysis tasks compared
to other classical models. When integrating PAMoE with
LongViT, we adopted the most commonly used method of
integrating MoE within the transformer architecture by re-
placing the FFN layer with an MoE layer. Following recent
practice [8, 25], we replace the feed-forward component
of every other Transformer layer with a PAMoE layer, and
interleave regular Transformer layers and MoE layers.
PatchGCN [5]. PatchGCN is a classical MIL model used
for analyzing WSI. It employs a GNN to model the spatial
relationships between patches, enabling the model to be
context-aware. Unlike transformer-based models that use
self-attention for global message passing, the characteristics
of the GNN enable feature interactions within PatchGCN to
occur over a more localized range. In this way, we test the
types of models suitable for PAMoE and formulate several
hypotheses. In terms of implementation, PatchGCN first
uses an MLP layer to map the features of patches to a lower
dimension, and then employs a GNN to perform message
passing among adjacent patches. We directly replace the
MLP layer with PAMoE layer, allowing different experts
to map the heterogeneous patches, while keeping the other
components unchanged.

9. Implementation Detail of using CONCH as
Classifier

This section provides a detailed explanation of using
CONCH as a classifier in Sec. 4.2. CONCH [30] is a visual-



language foundation model. The model can be immediately
used for downstream classification tasks due to the aligned
visual-language pretraining, which eliminates the need for
additional labeled examples for supervised learning or fine-
tuning. As shown in Fig. 6, we use text prompts to map
patches and prompts into the same embedding space, com-
paring the cosine similarity of the representations to obtain
category labels. We constructed our set of predetermined
text prompts based on the set of class or category names
provided by CONCH. The set of categories and their names
we use including: 0. lymphoid infiltrate 1. stroma 2. tumor
3. necrosis 4. others (adipose, background, penmarking,
mucin, muscle, benign epithelium)

Figure 6. Schematic of zero-shot classification using contrastively
aligned image and text encoders of CONCH.

10. Datasets and Implementation Details
This section provides a detailed explanation of the datasets
and implementation details for experiments in Sec. 5.

10.1. Datasets
We conducted experiments based on survival task across
different cancer types. All cancer types of WSIs are from
The Cancer Genome Atlas (TCGA) repository.1 We choose
these cancer types for training and evaluation using the fol-
lowing criteria: 1) overall label available, 2) balanced distri-
bution of uncensored-to-censored patients in survival task
During dataset construction, we only preserve formalin-fixed
paraffin-embedded hematoxylin and eosin (H&E) slides, con-
sidering the morphological alternation in frozen sections. For
all approaches within the same task, we use the same 5-fold
cross-validation splits. The specific split settings are pro-
vided in the accompanying code. We validated PAMoE on
the survival prediction task across five cancer types, includ-
ing: Breast Invasive Carcinoma (BRCA) (999 cases), Lower
Grade Glioma (LGG) (773 cases), Lung Adenocarcinoma
(LUAD) (492 cases), Colon Adenocarcinoma (COAD) (400

1https://portal.gdc.cancer.gov/

cases), Pancreatic Adenocarcinoma (PAAD) (192 cases). We
use the concordance index (C-index) for the evaluation of all
cancer types.

10.2. Implementation Details

Patch Extraction and Embedding. First, we use OTSU to
extract foreground tissue regions. Then we extract a series
of non-overlapping patches at 20× magnification with size
256× 256 which contain more than 50% foreground tissue.
All patches are encoded by UNI [6] into 1024-dimensional
vectors, and the encoder does not perform data augmentation
during inference.
Network Hyper-Parameter. For PatchGCN [5] and Trans-
MIL [36], the hyper-parameters were set exactly as in the
original papers, except for the inserted PAMoE module. For
LongViT [39], we set the number of transformer layers to
4, the hidden dimension to 512, the dilated attention ratio to
(1, 2, 4, 8, 16, 32), and the segment length to (1024, 2048,
4096, 8192, 16384, 32768). We use global attention pooling
as CLAM [29] to gather all tokens to the WSI-level feature.
Unless otherwise specified, for all PAMoE layers, we set
Prior Supervised Experts to 4, the number of Free Experts to
2, the capacity factor c = 2.0, and the tuning hyperparameter
α of LPAMoE is 0.1.
Training and Evaluation. Adam optimization [23] is
adopted to optimize our model. We use Adam optimiza-
tion with a default learning rate of 2× 10−4, weight decay
of 1 × 10−5, and the batch size is set to 6. All experiment
results are obtained through 5-fold cross-validation. Concor-
dance index (C-index) [15] and its standard deviation (std)
are used to measure the predictive performance in correctly
ranking the survival risk of each patient. All the experiments
are implemented using PyTorch [33] on a workstation with
an A6000 GPU.

11. Further Ablation

11.1. Ablation Study on Expert Choice Routing.

We introduced an expert choice routing strategy within
PAMoE, which grants the module the capability to actively
discard irrelevant patches. In this ablation study, we evalu-
ate the impact of the PAMoE module relative to the vanilla
SwitchMoE [8] on survival prediction outcomes. For Switch-
MoE, we set the hyperparameters to match those of PAMoE,
with a total of 6 experts and a capacity factor of 2.0. These
experiments were performed using TransMIL, with the re-
sults are detailed in Tab. 5. The findings demonstrate that
PAMoE consistently achieves superior performance over
SwitchMoE across most datasets. Additionally, the perfor-
mance of SwitchMoE underscores the general effectiveness
of mixture-of-experts modules in addressing heterogeneous
pathological tissues.



Table 5. Ablation study of the PAMoE and SwitchMoE. The best results over all models are highlighted in bold.

COAD LGG LUAD PAAD BRCA

TransMIL 0.676± 0.028 0.770± 0.059 0.656± 0.033 0.637± 0.072 0.692± 0.049
TransMIL+SwitchMoE 0.679± 0.023 0.772± 0.068 0.666± 0.014 0.648± 0.073 0.669± 0.039

TransMIL+PAMoE 0.688± 0.036 0.779± 0.072 0.668± 0.016 0.655± 0.074 0.694± 0.054

Table 6. Ablation study of Number of the class token and residual connections. The ffn cls column indicates whether an additional MLP
layer is used for processing the class token, and the residual column specifies whether residual connections were applied.

ffn cls residual COAD LGG LUAD PAAD BRCA

✗ ✓ 0.682± 0.032 0.782± 0.072 0.666± 0.020 0.647± 0.087 0.692± 0.057
✓ ✓ 0.687± 0.024 0.776± 0.056 0.665± 0.016 0.647± 0.084 0.681± 0.046
✓ ✗ 0.688± 0.036 0.779± 0.072 0.668± 0.016 0.655± 0.074 0.694± 0.054
✗ ✗ 0.697± 0.036 0.779± 0.061 0.649± 0.030 0.654± 0.070 0.678± 0.038

11.2. Discussions of Integrating PAMoE with
Transformer-Based Methods

Transformer-based models typically use a class token to ag-
gregate global information and apply residual connections
in the feed-forward network (FFN) layer. When integrating
such models with PAMoE, due to the instance drop character-
istic of Mixture-of-Experts via Expert Choice Routing, the
following issues may arise: For the class token, it might be
treated as an unimportant input and discarded. For residual
connections, if they are used, the dropped instances will not
be dropped out but rather remain unprocessed. Therefore,
in this section, we discuss the handling of class tokens and
residual connections when applying PAMoE to transformer-
based models. For class tokens, we experimented with two
approaches: a) Treating the class token as a regular input
without special handling; b) Excluding the class token from
the PAMoE input and instead using an additional MLP layer
for processing it. For residual connections, we evaluated
two scenarios: a) Using residual connections as in the origi-
nal architecture; b) Omitting residual connections.

Tab. 6 presents the performance of the TransMIL-based
model under different configurations. The ffn cls column
indicates whether an additional MLP layer is used for pro-
cessing the class token, and the residual column specifies
whether residual connections were applied. We find that for
residual connections, models without residual connections
often perform better than those with residual connections.
For the class token, when residual connections are used, the
additional MLP layer for the class token has little impact on
the results. However, if residual connections are not used and
the additional MLP layer for the class token is also omitted,
the model’s performance shows a noticeable decline. We
believe that the instance drop feature provides a performance
boost for PAMoE. However, using residual connections may

Figure 7. The visualization of the 16 clustering centers from K-
means. We selected the patches with the highest cosine similarity
to the clustering centers to represent each category.

introduce a chaotic mapping space that confuses the model.
For the class token, PAMoE’s router might drop the class to-
ken, significantly impacting the final results. When residual
connections are set, the class token is not entirely dropped,
so the impact is smaller. Conversely, without residual con-
nections, the class token is directly dropped, greatly affecting
the model’s performance. Therefore, in our implementation,
we use a setting with an additional MLP layer for the class
token and omit residual connections.

11.3. Ablation Study on the Source of Prototypes
Although calculating prototypes based on classification re-
sults can provide supervision for expert preferences based
on pathological priors, using an extra classifier introduces
additional computational overhead. Therefore, we discuss an
alternative approach that directly computes prior prototypes



Table 7. Ablation study of the source of prototypes.

COAD LGG LUAD PAAD BRCA

TransMIL 0.676± 0.028 0.770± 0.062 0.644± 0.026 0.646± 0.026 0.692± 0.049
Classifier(PAMoE) 0.688± 0.036 0.779± 0.072 0.668± 0.016 0.655± 0.074 0.694± 0.054

K-means(n=4) 0.680± 0.047 0.785± 0.068 0.657± 0.030 0.667± 0.064 0.690± 0.052
Selected 4 from K-means(n=16) 0.682± 0.045 0.792± 0.060 0.665± 0.014 0.667± 0.079 0.698± 0.051

Table 8. Experiment of using CONCH as encoder.

COAD LGG LUAD PAAD BRCA

TransMIL 0.700± 0.050 0.769± 0.026 0.623± 0.053 0.652± 0.063 0.676± 0.072
TransMIL+PAMoE 0.706± 0.053 0.776± 0.034 0.648± 0.060 0.657± 0.060 0.682± 0.059

LongViT 0.653± 0.042 0.721± 0.042 0.626± 0.042 0.601± 0.049 0.638± 0.049
TransMIL+PAMoE 0.677± 0.034 0.766± 0.061 0.640± 0.054 0.629± 0.040 0.654± 0.026

using cluster centers as supervisory targets here.
The results of the ablation study are shown in Tab. 7.

We first attempted to directly cluster all patches using the
K-means method (n=4) and used the resulting four cluster
centers as supervisory target prototypes, which is shown in
the K-means (n=4) row in the table. Next, we attempted to
select tissue categories aligned with our priors from multiple
clustering centers to achieve the same goal of incorporating
pathological priors, which is shown in the Selected 4 from
K-means(n=16) row. Specifically, we first applied K-means
clustering (n=16) to the patch set, obtaining 16 clustering
centers. For each clustering center, we selected the patches
with the highest cosine similarity to the clustering centers
for qualitative analysis, as shown in Fig. 7. We relied on
pathologists to guide us in selecting clustering centers that
represent the four categories in Eq. (11). Additionally, we
attempt to use a classifier to perform majority voting among
the top k patches with the highest cosine similarity to each
clustering center, selecting prior-aligned clustering centers.
This approach yielded results consistent with the pathol-
ogists’ selections. The results indicate that the approach
directly using four clustering centers from K-means shows a
performance drop compared to the supervised methods, but
it still outperforms the unsupervised baseline. The selection-
based approach demonstrates more stable performance and
even surpasses the classifier-based method on some datasets,
showcasing its effectiveness. Therefore, we propose it as
an alternative to the classifier-based prototype extraction
method.

11.4. Discussion about Using CONCH as encoder

In experiments, CONCH was used as an additional classifier
to obtain prototypes, which may lead to additional compu-
tational overhead and unfair comparisons. To address this

concern, we conduct experiments of using CONCH as the
encoder, and directly use CONCH text encoder to obtain fea-
tures from tissue text prompts as prototypes. Tab. 8 shows
that PAMoE can still bring improvements when CONCH
is used as the encoder. Using CONCH as the encoder and
leveraging the CONCH text encoder to extract prototypes
can significantly improve efficiency. However, this requires
using features after the projection head and normalization
to align the text encoder and image encoder features, which
is inconsistent with CONCH’s setting when used as an im-
age encoder, where image embeddings are usually taken
before the projection head and normalization. Moreover,
relying solely on CONCH’s image and text encoders as fea-
ture extractors limits the scalability of PAMoE. Therefore,
the primary method in this study employs CONCH only
as a classifier to obtain prior prototypes, with additional
experiments provided to explore the use of CONCH as an
encoder.

11.5. Capacity Factor

The capacity factor c determines the number of instances
each expert in PAMoE can process, directly influencing the
proportion of instances dropped by the model. This instance
drop characteristic makes PAMoE more sensitive to the set-
ting of the capacity factor. Fig. 8 illustrates the performance
of the TransMIL-based model under different capacity fac-
tor settings. We observed that under lower capacity factor
settings, the model’s performance on the COAD and BRCA
datasets was significantly lower compared to other settings.
However, for the LGG and PAAD datasets, lower capacity
factor settings led to performance improvements. We believe
this is related to the WSI resolution corresponding to the can-
cer type datasets. The average number of patches obtained
from each dataset at 20× magnification is as follows: COAD



Table 9. Proportion of discarded patches in different capacity factor settings and different datasets (%).

Capacity Factor COAD LGG LUAD PAAD BRCA

2 2.95± 2.86 4.90± 2.77 5.17± 3.07 0.99± 0.50 5.13± 4.14
1.9 4.16± 3.68 6.68± 3.36 6.92± 3.63 1.67± 0.70 6.78± 4.83
1.8 5.64± 4.43 8.73± 3.96 8.97± 4.18 2.60± 0.95 8.70± 5.47
1.5 11.89± 6.38 16.68± 5.49 16.83± 5.42 7.54± 1.87 16.03± 6.91
1.4 14.68± 6.85 19.93± 5.86 20.05± 5.66 10.07± 2.17 19.03± 7.17
1 29.71± 7.12 35.86± 6.23 35.54± 5.53 25.09± 2.96 33.90± 6.88

0.9 34.53± 6.76 40.60± 6.00 40.11± 5.22 30.18± 2.97 38.41± 6.45

(8,091), LGG (10,122), LUAD (11,755), PAAD (12,356),
and BRCA (9,633). Among them, the average number of
patches in the COAD and BRCA is significantly lower than
in other datasets. The capacity factor affects the proportion
of patches discarded by PAMoE. With a smaller capacity
factor setting, each expert processes fewer patches, leading
to the discarding of more patches. For large-scale WSIs,
the model may struggle with excessive input, so discarding
more low-relevance patches might help the model focus on
high-relevance patches, thereby improving overall perfor-
mance. However, for smaller-scale WSIs, the model might
already be able to focus on the patches by itself. In this case,
excessive discarding could lead to information loss, thereby
impacting the overall performance of the model.
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Figure 8. The impact of the capacity factor on model performance
based on TransMIL.

11.6. Quantitative Analysis of Discarded Patches
and Discussion about Capacity Factor

Tab. 9 presents the proportion of dropped patches of one
PAMoE layer under different capacity factor settings and
different datasets. The observations indicate that the propor-
tion of dropped patches varies even under the same capacity

factor setting. The classical capacity factor cannot directly
reflect the patch dropping ratio in MoE via expert choice
routing and is susceptible to factors such as input scale and
the number of experts. In future work, we will explore more
suitable methods to control the patch selection process in the
MoE layer.

11.7. Further Discussion about Free Experts
Tab. 2 in the main paper presents the model performance
under different experts number settings. The observations
reveal that the setting without any free experts achieves the
best results on certain datasets. This raises concerns about
the necessity of free experts. We think the optimal number
of free experts might have something to do with the task. If
the predefined prototypes revel most of information required
by the task, the network may not need free experts at all.
But if the predefined prototypes can not differentiate classes
required for the task, e.g. fine-grained classes, we may
need to lean some free experts. We appreciate all reviewers’
suggestions and will further explore it in future work.

12. Experiments on More Tasks
In the main paper, we primarily conducted detailed exper-
iments based on the survival prediction task. To validate
the generalizability of PAMoE across a broader range of
tasks, we additionally evaluate the performance of PAMoE
on subtyping and staging tasks. All settings are identical to
those in the main paper.

12.1. Datasets.
Subtyping. We validated PAMoE on the subtyping task
across two cancer types, including: COAD: Mucinous ade-
nocarcinoma or not (2 classes, 434 cases); BRCA: Lobular
carcinoma and Infiltrating duct carcinoma (2 classes, 950
cases),
Staging. We validated PAMoE on the staging task across
four cancer types, including COAD (400 cases), LUAD (492
cases), PAAD (192 cases), and BRCA (999 cases). All
the cases are divided into the “Stage I”, “Stage II”, “Stage
III”, and “Stage IV” classes. We choose these cancer types



Table 10. Subtyping results over two cancer datasets based on accuracy, F1, and AUC (mean ± std). The optimal results for different variants
of the model are highlighted in bold.

COAD BRCA

Accuracy F1 AUC Accuracy F1 AUC

PatchGCN 0.882± 0.043 0.928± 0.029 0.822± 0.028 0.925± 0.032 0.951± 0.023 0.907± 0.037
PatchGCN+PAMoE 0.847± 0.038 0.906± 0.024 0.826± 0.035 0.918± 0.025 0.947± 0.017 0.923± 0.026

TransMIL 0.858± 0.031 0.916± 0.020 0.751± 0.040 0.941± 0.013 0.956± 0.013 0.924± 0.022
TransMIL+PAMoE 0.908± 0.008 0.947± 0.006 0.745± 0.069 0.933± 0.018 0.962± 0.010 0.928± 0.013

LongViT 0.707± 0.285 0.709± 0.342 0.503± 0.017 0.806± 0.053 0.891± 0.032 0.543± 0.087
LongViT+PAMoE 0.687± 0.266 0.734± 0.367 0.499± 0.085 0.812± 0.031 0.908± 0.032 0.554± 0.079

Table 11. Staging results over four cancer datasets based on accuracy, F1, and AUC (mean ± std). The optimal results for different variants
of the model are highlighted in bold.

COAD LUAD

Accuracy F1 AUC Accuracy F1 AUC

PatchGCN 0.392± 0.014 0.382± 0.015 0.636± 0.029 0.549± 0.045 0.439± 0.049 0.678± 0.051
PatchGCN+PAMoE 0.407± 0.023 0.389± 0.035 0.642± 0.044 0.584± 0.062 0.432± 0.041 0.687± 0.033

TransMIL 0.426± 0.031 0.393± 0.032 0.649± 0.015 0.549± 0.047 0.467± 0.035 0.658± 0.062
TransMIL+PAMoE 0.433± 0.057 0.406± 0.054 0.650± 0.033 0.569± 0.039 0.429± 0.029 0.681± 0.059

LongViT 0.317± 0.109 0.135± 0.055 0.508± 0.033 0.471± 0.110 0.192± 0.016 0.518± 0.054
LongViT+PAMoE 0.371± 0.058 0.160± 0.044 0.483± 0.043 0.537± 0.061 0.217± 0.040 0.523± 0.039

PAAD BRCA

Accuracy F1 AUC Accuracy F1 AUC

PatchGCN 0.802± 0.126 0.527± 0.093 0.623± 0.047 0.526± 0.053 0.386± 0.026 0.668± 0.030
PatchGCN+PAMoE 0.868± 0.057 0.480± 0.042 0.669± 0.053 0.514± 0.039 0.397± 0.033 0.676± 0.033

TransMIL 0.855± 0.055 0.450± 0.065 0.602± 0.052 0.499± 0.045 0.365± 0.024 0.651± 0.035
TransMIL+PAMoE 0.873± 0.048 0.514± 0.058 0.629± 0.069 0.500± 0.039 0.372± 0.031 0.654± 0.031

LongViT 0.813± 0.082 0.346± 0.077 0.478± 0.066 0.576± 0.033 0.187± 0.009 0.508± 0.036
LongViT+PAMoE 0.710± 0.260 0.347± 0.127 0.579± 0.045 0.554± 0.042 0.316± 0.018 0.642± 0.044

for training and evaluation using the following criteria: 1)
overall label available, 2) balanced distribution of subtyping
and staging labels. We use accuracy, F1, and AUC metrics
for evaluation.

12.2. Results
The results for the staging and subtyping tasks are respec-
tively presented in Tab. 11 and Tab. 10. We observe that
the findings for these tasks are consistent with the conclu-
sions drawn from the survival prediction task in Sec. 5.3 in
main paper, demonstrating the generalizability of PAMoE.
Additionally, we find that for staging and subtyping tasks,
PAMoE exhibit relatively stable improvements when applied
to the PatchGCN model, which is not transformer-based.
This suggests the potential of PAMoE for applications in
non-transformer architectures. We will further explore this
in future research.
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