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1. Further experiments

Table 1. Comparison of precision (Prec.), success rate (Succ.),
and inference speed on NVIDIA Jetson AGX Xavier edge device
(AGX.FPS) between ORTrack-DeiT and the ten lightweight SOTA
trackers on BioDrone [50] dataset.

Trcker Source BioDrone AGX.FPSPrec. Succ.
ORTrack-DeiT Ours 35.6 30.8 38.1

AVTrack-DeiT[30] ICML 24 33.8 29.1 40.7
LightFC[31] KBS 24 31.8 29.1 34.5
SMAT[21] WACV 24 28.3 24.9 33.2

PRL-Track[17] IROS 24 23.0 19.4 33.7
Aba-ViTrack[27] ICCV 23 35.9 31.3 34.3

HiT[24] ICCV 23 34.0 29.9 36.8
SGDViT[44] ICRA 23 20.2 17.2 31.7

TCTrack++[6] TPAMI 23 25.0 20.9 28.2
TCTrack[5] CVPR 22 23.8 20.3 34.1

HiFT[4] ICCV 21 21.4 17.8 35.2

1.1. Comparison on BioDrone

We have conducted an additional comparison of our
ORTrack-DeiT with 10 state-of-the-art lightweight trackers
on the BioDrone [50] benchmark. The results are illustrated
in Table 1. In terms of tracking performance, our ORTrack-
DeiT demonstrates precision and success rates comparable
to the best tracker, Aba-ViTrack, with only minor differ-
ences of 0.3% and 0.5%, respectively. Regarding efficiency,
ORTrack-DeiT ranks as the second-fastest with a speed
of 38.1 AGX.FPS, which achieves speed improvements of
11% over Aba-ViTrack. Although it is slightly behind
AVTrack-DeiT, which achieves 40.7 AGX.FPS, ORTrack-
DeiT outperforms AVTrack-DeiT in precision and success
rates by 1.8% and 1.7%, respectively. These results further
underscore the effectiveness of our approach.

Table 2. Attribute-based comparison on the occlusion challenge
subsets of LaSOT [16] and OTB100 [42].

LaSOT OTB100Trcker Source Prec. Succ. Prec. Succ.
ORTrack-DeiT Ours 60.4 54.2 75.9 64.9

AVTrack-DeiT[30] ICML 24 57.8 52.6 75.6 64.4
LightFC[31] KBS 24 54.8 49.7 75.4 64.6
SMAT[21] WACV 24 56.7 51.7 74.6 63.9

PRL-Track[17] IROS 24 38.1 37.3 64.8 58.8
Aba-ViTrack[27] ICCV 23 60.0 53.9 74.1 63.6

HiT[24] ICCV 23 53.5 50.5 64.6 57.2
SGDViT[44] ICRA 23 38.4 37.0 64.7 57.8

TCTrack++[6] TPAMI 23 41.3 39.1 69.6 61.1
TCTrack[5] CVPR 22 39.8 35.3 65.5 56.9

HiFT[4] ICCV 21 33.2 33.7 62.1 56.1

1.2. Extension on general object tracking

We have performed additional experiments on the subsets of
LaSOT [16] and OTB100 [42] that involve occlusion chal-
lenges, to evaluate the generalization applicability of our
method. As shown in Table 2, ten SOTA lightweight track-
ers are compared with our ORTrack-DeiT tracker. Obvi-
ously, our ORTrack-DeiT outperforms all trackers in both
precision and success rate, further highlighting the effec-
tiveness of our approach.

2. Supplementary comprehensive experimen-
tal results to the main text

2.1. Comparison with Deep Trackers

Due to page length constraints in the main paper, we lim-
ited our comparison to our approach and state-of-the-art
(SOTA) deep trackers using the VisDrone2018 [52] dataset.
In this section, we compare our ORTrack-DeiT with SOTA
deep trackers using more UAV tracking datasets featured in
our main paper. These additional datasets include DTB70
[28], UAVDT [15], and UAV123 [34]. The evaluation re-
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Table 3. The comparison of the precision (Prec.), success rate (Succ.), and speed (FPS) of deep-based trackers on DTB70 [28], UAVDT
[15], VisDrone2018 [52], and UAV123 [34] with ORTrack-DeiT. The top three results are displayed in red, blue and green fonts.

DTB70 UAVDT VisDrone2018 UAV123 Avg.Trcker Source Prec. Succ. Prec. Succ. Prec. Succ. Prec. Succ. Prec. Succ. Avg.FPS

ORTrack-DeiT Ours 86.2 66.4 83.4 60.1 88.6 66.8 84.3 66.4 85.6 65.0 226.4
AQATrack[43] CVPR 24 86.3 66.2 84.7 63.7 87.2 66.9 89.5 70.6 86.9 66.9 60.5
HIPTrack[2] CVPR 24 88.4 68.6 79.6 60.9 86.7 67.1 89.2 70.5 86.0 66.8 35.6

EVPTrack[36] AAAI 24 85.8 66.5 80.6 61.2 84.5 65.8 88.9 70.2 85.0 65.9 25.3
ROMTrack[3] ICCV 23 87.2 67.4 81.9 61.6 86.4 66.7 87.4 69.2 85.7 66.2 53.6

ZoomTrack[26] NIPS 23 82.0 63.2 77.1 57.9 81.4 63.4 88.4 69.6 82.2 63.5 64.3
SeqTrack[8] CVPR 23 85.7 65.6 79.0 59.8 85.3 65.8 86.8 68.6 84.2 65.0 17.6

MAT[49] CVPR 23 83.2 64.5 72.9 54.8 81.6 62.2 86.7 68.3 81.1 62.5 72.3
SparseTT[18] IJCAI 22 82.3 65.8 82.8 65.4 81.4 62.1 85.4 68.8 83.0 65.5 32.8
OSTrack[45] ECCV 22 82.7 65.1 85.0 67.2 84.2 64.8 87.2 68.9 84.8 66.5 65.8
SimTrack[7] ECCV 22 83.2 64.6 76.5 57.2 80.0 60.9 88.2 69.2 81.9 62.9 73.1
ToMP[33] CVPR 22 85.6 67.1 85.4 64.1 84.1 64.4 82.6 65.9 84.4 65.4 24.3

AutoMatch[48] ICCV 21 82.5 63.4 82.1 60.8 78.1 59.6 78.5 60.7 80.3 61.1 64.6
KeepTrack[32] ICCV 21 83.6 64.3 83.8 60.5 84.0 63.5 85.9 67.3 84.3 63.9 22.1

SAOT[51] ICCV 21 83.1 64.6 82.1 60.7 76.9 59.1 82.7 64.9 81.2 62.3 37.2
TranT[9] CVPR 21 83.6 65.8 82.6 63.2 85.9 65.2 85.0 67.1 84.3 65.3 53.2

TrDiMP[38] CVPR 21 82.4 63.9 88.2 64.5 84.1 63.1 84.0 66.3 84.7 64.5 31.6
PrDiMP50[11] CVPR 20 76.4 59.5 82.7 60.1 79.4 59.7 85.7 67.7 81.1 61.8 45.5

DiMP50[1] ICCV 19 79.2 61.3 78.3 57.4 83.5 63.0 83.1 65.2 81.0 61.7 71.9

Table 4. Effect of ORR and AFKD on the performance of the baseline trackers.

Method ORR AFKD DTB70 UAVDT VisDrone2018 UAV123 Avg. Avg.FPSPrec. Succ. Prec. Succ. Prec. Succ. Prec. Succ. Prec. Succ.

ORTrack-ViT
79.3 62.4 77.0 55.6 83.0 62.7 83.2 66.5 80.6 61.8 212.2

✓ 83.2 64.5 80.3 58.2 84.6 63.6 84.1 65.9 83.1↑2.5 63.1↑1.5 -
✓ ✓ 81.8 63.8 79.1 57.5 84.1 63.3 82.5 65.3 81.9↑1.3 62.5↑0.7 270.6↑27%

ORTrack-Eva
80.5 62.8 78.1 56.6 79.7 60.7 80.4 63.2 79.7 60.8 238.1

✓ 81.6 63.3 80.8 58.7 84.5 63.6 82.3 64.7 82.3↑2.6 62.5↑1.7 -
✓ ✓ 81.1 62.8 79.5 57.8 81.8 62.3 81.5 64.4 80.8↑1.1 61.6↑0.8 301.2 ↑26%

ORTrack-DeiT
84.2 65.1 78.6 56.7 81.6 62.2 83.7 66.1 82.0 62.5 226.4

✓ 86.2 66.4 83.4 60.1 88.6 66.8 84.3 66.4 85.6 ↑3.6 65.0↑2.5 -
✓ ✓ 83.7 65.1 82.5 59.7 84.6 63.9 84.0 66.1 83.7↑1.7 63.7↑1.2 292.3 ↑29%

sults for ORTrack-DeiT and the competing deep trackers
are presented in Table 3. As demonstrated, our ORTrack-
DeiT is the fastest tracker and it is above three times the
speed of the second fastest tracker DiMP50 [1]. It can be
seen that there is no tracker can achieve the highest Prec.
and Succ. on all datasets. Remarkably, our ORTrack-DeiT
achieves the first place of Prec. and the third place of Succ.
on VisDrone2018. Although the proposed method was not
targeted at generic visual tracking, its performance on these
UAV tracking datasets is able to beat many deep trackers.
It is very impressive considering the significantly high effi-
ciency our method achieves, i.e., 226.4 FPS, while all other
deep trackers are under 100.0 FPS. These results suggest
that our method is able to strike a better balance for UAV
tracking.

2.2. Effect of Occlusion-Robust Representations
(ORR) and Adaptive Feature-Based Knowl-
edge Distillation (AFKD)

Table 4 presents comprehensive results on the impact of the
ORR and AFKD, evaluated across four datasets. To avoid
potential variations due to randomness, we only present the
speed of the baseline, since the GPU speeds of the base-

line and its ORR-enhanced version are theoretically iden-
tical. As can be seen, the incorporation of ORR signifi-
cantly enhances both Prec. and Succ. for all baseline track-
ers. Specifically, the Avg.Prec. increases for ORTrack-
ViT, ORTrack-Eva, and ORTrack-DeiT are 2.5%, 2.6%,
and 3.6%, respectively, while the Avg.Succ. increases are
1.5%, 1.7%, and 2.5%, respectively. These significant en-
hancements highlight the effectiveness of ORR in improv-
ing tracking precision. The further integration of AFKD
results in consistent improvements in GPU speeds, with
only slight reductions in Prec. and Succ. Specifically, all
baseline trackers experience GPU speed enhancements of
over 26.0%, with ORTrack-DeiT showing an impressive
29.0% improvement. These results affirm the effectiveness
of AFKD in optimizing tracking efficiency while maintain-
ing high tracking performance.

2.3. Impact of Masking Operators

Table 5 provides comprehensive results of ORTrack-DeiT
with various implementations of masking operators (i.e.,
mU, mC, and SAM [25]) alongside data mixing augmen-
tation methods (i.e., AdAutoMix [35] and CutMix [46])
on the performance, evaluated across four datasets. As



Table 5. Effect of Masking Operators on the performance on DTB70, UAVDT, VisDrone2018, and UAV123.

Trcker mU mC SAM[25] AdAutoMix[35] CutMix[46] DTB70 UAVDT VisDrone2018 UAV123 Avg.
Prec. Succ. Prec. Succ. Prec. Succ. Prec. Succ. Prec. Succ.

ORTrack-DeiT

84.2 65.1 78.6 56.7 81.6 62.2 83.7 66.1 82.0 62.5
✓ 84.3 65.1 83.9 60.6 86.7 65.4 83.2 65.3 84.5↑2.5 64.1↑1.6

✓ 86.2 66.4 83.4 60.1 88.6 66.8 84.3 66.4 85.6↑3.6 65.0↑2.5
✓ 85.0 65.5 82.8 59.6 86.8 65.6 82.7 64.8 84.3↑2.3 63.8↑1.3

✓ 83.6 64.7 81.7 58.5 84.3 63.8 83.2 65.8 83.2↑1.2 63.2↑0.7
✓ 81.7 63.1 79.5 57.7 85.7 64.2 84.6 66.5 82.8↑0.8 62.9↑0.4

shown, on average, while using SAM, AdAutoMix, and
CutMix improve performance, the best result achieved with
SAM is only comparable to our mU masking operator, both
achieving gains exceeding 2.0% in Avg.Prec. and 1.0% in
Avg.Succ., respectively. When mC is applied, the improve-
ments are even more substantial, with increases of 3.6% and
2.5%, respectively. These results validate the effectiveness
of the proposed ORR component and particularly demon-
strate the superiority of the masking operator based on spa-
tial Cox processes.

Table 6. Impact of the masking ratio σ in constructing masked
templates with the masking operator based on spatial Cox pro-
cesses on ORTrack-DeiT.

DTB70 UAVDT VisDrone2018 UAV123 Avg.
σ Prec. Succ. Prec. Succ. Prec. Succ. Prec. Succ. Prec. Succ.
0.1 83.2 64.4 82.9 59.6 84.5 64.2 82.2 64.7 83.2 63.2
0.2 84.5 65.7 84.1 60.5 86.1 65.2 83.1 65.5 84.5 64.2
0.3 86.2 66.4 83.4 60.1 88.6 66.8 84.3 66.4 85.6 65.0
0.4 83.6 64.6 81.6 59.1 85.1 64.6 85.3 67.1 83.9 63.8
0.5 82.9 64.3 83.3 60.3 87.2 65.5 83.3 65.5 84.2 63.9
0.6 83.4 64.8 83.8 60.7 85.1 64.6 81.8 64.3 83.5 63.6
0.7 82.3 63.6 82.6 59.4 83.0 63.0 85.0 66.8 83.2 63.2
0.8 82.7 64.1 81.2 58.9 84.1 63.9 83.6 65.7 82.9 63.2

2.4. Impact of Masking Ratio in Constructing
Masked Templates

To understand the impact of the masking ratio σ in con-
structing masked templates with the masking operator based
on spatial Cox processes on learning occlusion-robust rep-
resentations, we train ORTrack-DeiT with different settings
of σ, ranging from 0.1 to 0.8 with the step of 0.1, and eval-
uate on four UAV tracking benchmarks. The evaluation
results are shown in Table 6. From table, ORTrack-DeiT
demonstrates optimal performance with the σ value of 0.3,
achieving an Avg.Prec of 85.6% and an Avg.Succ of 65.0%.
Experimental results show that the choice of masking ra-
tios significantly impacts tracking performance, with both
smaller and larger ratios hindering optimal results.

2.5. Impact of Patch Size in Constructing Masked
Templates

To understand the impact of patch size p × p on learning
occlusion-robust ViTs with the proposed masking opera-
tor mC, we trained ORTrack-DeiT with different p settings,

Table 7. Impact of the patch size p × p in constructing masked
templates on ORTrack-DeiT.

DTB70 UAVDT VisDrone2018 UAV123 Avg.
p × p Prec. Succ. Prec. Succ. Prec. Succ. Prec. Succ. Prec. Succ.

8 85.6 65.9 82.3 59.3 87.5 66.1 84.7 66.5 85.0 64.4
16 86.2 66.4 83.4 60.1 88.6 66.8 84.3 66.4 85.6 65.0
32 84.8 65.4 84.3 60.9 85.6 64.3 83.8 66.2 84.6 64.2
64 82.4 63.9 83.8 60.3 84.8 63.8 84.2 66.2 83.8 63.6

ranging from 8 to 64, doubling each time, and evaluated
on four UAV tracking benchmarks. The results are shown
in Table 7. As observed, ORTrack-DeiT achieved the best
performance when p = 16, achieving an average Prec. of
85.6% and Succ. of 65.0%, respectively. However, the opti-
mal patch size varies by dataset: p = 8 is best for UAV123,
while p = 32 is optimal for UAVDT, reflecting that occlu-
sion challenges differ across datasets.

Table 8. Ablation study on loss Lorr weighting on DTB70,
UAVDT, VisDrone2018, and UAV123 by varying γ from 0.5 ×
10−4 to 5× 10−4.

DTB70 UAVDT VisDrone2018 UAV123 Avg.
γ Prec. Succ. Prec. Succ. Prec. Succ. Prec. Succ. Prec. Succ.

0.5 82.2 64.0 82.1 58.7 85.2 64.5 83.7 66.0 83.3 63.3
0.6 84.8 65.4 81.9 58.6 85.4 64.8 84.7 66.2 84.2 63.8
0.7 85.1 65.8 84.2 60.5 86.5 65.9 84.6 66.5 85.1 64.7
0.8 84.5 65.2 83.8 60.2 85.6 64.9 83.9 65.8 84.5 64.0
0.9 83.1 64.6 82.7 59.3 84.1 63.8 84.5 66.3 83.6 63.5
1.0 84.5 65.9 82.9 60.0 86.6 65.3 84.2 66.0 84.5 64.3
2.0 86.2 66.4 83.4 60.1 88.6 66.8 84.3 66.4 85.6 65.0
3.0 84.3 65.0 84.7 60.8 87.9 66.5 82.6 65.4 84.9 64.4
4.0 82.3 63.8 82.4 58.9 85.4 64.7 85.2 66.9 83.8 63.6
5.0 82.6 64.1 83.6 60.2 83.8 63.6 83.9 66.1 83.5 63.5

2.6. Impact of Weighting the Loss for Learning
Occlusion-Robust Representations Based on
Spatial Cox Processes

To obtain the optimal weight γ for the proposed loss that
learns occlusion-robust representations based on spatial cox
processes, we trained ORTrack-DeiT using varied values of
γ ranging from 0.5× 10−4 to 5× 10−4 with increments of
0.1× 10−4. The evaluation results are presented in Table 8.
As shown, our tracker achieves optimal performance when
the loss weight (γ) is set to 2.0 × 10−4. Additionally, we
have observed that the second and third-best performances
across these datasets are scattered both above and below the



Figure 1. Qualitative evaluation on 4 video sequences from, respectively, DTB70 [28], VisDrone2018 [52], UAVDT [15], and UAV123
[34] (i.e. Car2, S1607, uav0000180 00050 s, and person10).

value of 2.0 × 10−4, without any apparent patterns. This
variation may be attributed to the inherent differences be-
tween these datasets. Setting a value of 0.5 × 10−4 for
the loss weight (γ) results in an average maximal differ-
ence of Prec. of 2.3% and a maximal difference of Succ.
of 1.7%. These significant margins clearly demonstrate
that the choice of weight a has a considerable impact on
the tracking performance. To be more specific, when the
proposed loss is appropriately weighted, it can enhance the
tracking performance. However, if not properly weighted, it
may have detrimental effects on the training of the tracking
task.

Table 9. Application of our ORR component to three SOTA track-
ers: ARTrack [40], GRM [20], and DropTrack[41].

Method ORR DTB70 UAVDT VisDrone2018 UAV123 Avg.
Prec. Succ. Prec. Succ. Prec. Succ. Prec. Succ. Prec. Succ.

ARTrack 78.1 59.8 77.1 54.6 77.7 59.5 79.4 60.8 78.3 58.7
✓ 79.8 61.4 78.5 55.8 79.5 60.8 80.6 61.7 79.6 59.9

GRM 82.9 64.3 79.0 57.7 82.7 63.4 84.6 66.2 82.3 62.9
✓ 85.1 65.4 81.7 59.3 84.8 64.6 85.1 66.6 84.1 64.0

DropTrack 80.7 63.3 76.9 55.9 81.5 62.7 83.3 65.6 80.6 61.9
✓ 84.3 65.1 78.7 57.4 82.8 64.2 83.6 65.9 82.3 63.1

2.7. Application to SOTA trackers

To show the wide applicability of our proposed method,
we incorporate the proposed ORR into three existing SOTA
trackers: ARTrack [40], GRM [20], and DropTrack [41].
Please note that we replace the model’s original backbones
with ViT-tiny [14] to reduce training time. The evalua-
tion results on four UAV tracking benchmarks are shown
in Table 9. As mentioned previously, the GPU speeds of
the baseline and its ORR-enhanced version are theoretically
identical to eliminate potential nuances arising from ran-
domness. As observed, incorporating ORR results in signif-
icant improvements in both precision and success rates for
the three baseline trackers. Specifically, ARTrack, GRM,
and DropTrack show increases of 1.3%, 1.8%, and 1.7% in
Avg.Prec., respectively, while their Avg.Succ. improve by
1.2%, 1.1%, and 1.2%, respectively. These experimental
results demonstrate that the proposed ORR component can
be seamlessly integrated into existing tracking frameworks,
improving tracking accuracy without adding extra compu-
tational overhead.



Figure 2. Each group shows the masked image (top), feature map by ORTrack-DeiT with (middle) and without (bottom) ORR. The masking
ratios are 0%, 10%, 30%, 50%, and 70%, from left to right.

Figure 3. The real data visualization recorded on the UAV platform is visualized, the tracking target has been marked with a red box.
Different line representatives perform target tracking in different environments, the frame has been marked in the upper left corner.

2.8. Qualitative Results

Several qualitative tracking results of ORTrack-DeiT and
seven SOTA UAV trackers are shown in Fig. 1. As
show, only our tracker successfully tracks the targets
in all challenging examples, where pose variations (i.e.,
S1607, uav0000180 00050 s, and person10), background
clusters (i.e., all sequences), and scale variations (i.e.,
uav0000180 00050 s) are presented. In these cases, our
method performs significantly better and is more visu-
ally appealing, bolstering the effectiveness of the proposed
method for UAV tracking.

Fig. 2 visualizes more feature maps produced by
ORTrack-DeiT on two samples from UAV123 [34] with and
without occlusion-robustness implemented. We can see that
feature maps generated by ORTrack-DeiT with occlusion-
robustness implemented are more consistent as the mask-

ing ratio changes, whereas those generated by ORTrack-
DeiT without occlusion-robustness change dramatically, es-
pecially at higher masking ratios. These qualitative results
provide visual evidence for the effectiveness of our method
in learning occlusion robust feature representations with
ViTs.

2.9. Real-world Tests

In order to test our method on a real drone, we integrated
an embedded onboard processor, the NVIDIA Jetson AGX
Xavier 32GB, into a typical UAV platform. During real-
world UAV testing, our ORTracker-DeiT and ORTracker-
D-DeiT maintained average speeds of 37.5 FPS and 45.3
FPS, respectively, with GPU utilization rates of 42.8% and
37.6%. Two example tracking results are shown in Fig. 3.
The first row show a small object with drastic changes in



scale and rapid movement. In the second line of the ultra-
long sequence video, the object is tracked with blurred vi-
sion and obstructed by trees under sunlight exposure. Real-
world testing on embedded systems directly verifies it can
still maintain robustness during frequent occlusion and ex-
cellent performance and efficiency in various UAV specific
challenges.

2.10. Attribute-based Evaluation

To deeply understand the superiority of our trackers over
SOTA UAV trackers, we conduct performance evaluations
using ORTrack-DeiT against 17 trackers, including KCF
[22], STRCF [13], fDSST [12], BACF [19], MCCT H
[37], ECO HC [10], AutoTrack [29], ARCF [23], HiFT
[4], TCTrack [5], P-SiamFC++ [39], SGDViT [44], DRCI
[47], ABDNet[53], Aba-ViTrack [27], PRL-Track [17], and
AVTrack-DeiT [30], evaluated on the VisDrone2018 nine
different attribute subsets. The ORTrack-DeiT exhibits ex-
ceptional performance in terms of Prec. and Succ. across
most of these attributes. It is worth mentioning that we also
evaluate ORTrack-DeiT without employing the proposed
components, which we refer to as ORTrack-DeiT* for ref-
erence. In Fig. 4, we present the precision plots and success
plots for the VisDrone2018 [52] dataset on these attributes.

As shown, with respect to both precision and success
plots, ORTrack-DeiT exhibits optimal performance in terms
of ‘Partial Occlusion’, ‘Full Occlusion’, ‘Fast Motion’,
‘Camera Motion’, ‘Out-of-View’, ‘Aspect Ratio Change’,
and ‘Background Cluster’. Remarkably, across these nine
attributes, and the integration of our proposed compo-
nents leads to significant improvements when compared to
ORTrack-DeiT*, achieving enhancements of 6.9%, 8.1%,
3.9%, 7.7%, 7.7%, 5.7%, 16.3%, 4.0%, and 20.7% in pre-
cision, and 4.4%, 5.6%, 2.1%, 5.0%, 5.2%, 6.7%, 10.6%,
2.4%, and 13.3% in success rate, respectively. These results
provide strong evidence for the effectiveness of our method
in improving tracking performance.



Figure 4. Precision and success rate plots for attribute-based comparisons are shown for the attribute subsets of VisDrone2018. Note that
ORTrack-DeiT* denotes ORTrack-DeiT without the application of the proposed components.
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