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7. Discussion
7.1. MODA Compatibility with IMU Signals
MODA is a specialized data augmentation technique de-
signed explicitly for IMU signals. Its strength lies in its
ability to simulate the natural drift of body-worn IMUs dur-
ing human movement. This approach not only enhances
the realism of augmented data by mirroring complex, real-
world scenarios but also adheres seamlessly to the three fun-
damental properties intrinsic to IMU signals.

Time-Series. As discussed in the main paper, MODA sim-
ulates IMU drift, a time-dependent variable, making it in-
herently compatible with the time-series nature of IMU sig-
nals. In other words, the temporal variations in drift en-
sure that the augmented IMU signals preserve their intrin-
sic time-series properties, maintaining coherence with real-
world dynamics.

Multimodality. MODA simulates two distinct types of drift
commonly observed in IMU-based human motion analysis:
self-rotation and relative sliding. These are used to augment
rotation and acceleration measurements, effectively captur-
ing the multimodal nature of IMU signals. Furthermore, it
can be formally demonstrated that this augmentation pre-
serves the orthogonality of rotation readings, ensuring their
physical validity:

Proposition 4 The measurement R̂G
sensor(t) after MODA

augmentation still maintains its orthogonality.

According to Eq. (7) in the main paper, R̂G
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Therefore, R̂G
sensor(t) maintains orthogonality.

Motion-Consistency. In Eqs. (7) and (8) of the main
paper, the augmented IMU measurements R̂G

sensor(t) and
âSsensor(t) are explicitly derived from the bone movements
RM

bone and aMbone. This ensures that the augmented IMU
signals closely and accurately encapsulate the underlying
physical human motion.

7.2. MODA’s Generalization

IMUs inside Smart Glasses. In this section, we have dis-
cussed MODA’s performance with strictly aligned device
positions and poses, such as the IMUs inside smart glasses.
We believe that this falls outside the scope of our paper, as
we focus on IMUs attached to the human body, covered by
“soft skin”, rather than rigid metal surfaces on robots, where
strict alignment of IMUs is achievable. Specifically, while
the relative positions of IMUs may be aligned with smart
glasses, the frames of the glasses inevitably shift along the
ears, especially during prolonged and comfortable wear.

Six-axis IMUs. For IMU data containing only angular ve-
locity and acceleration, a fusion algorithm (e.g., Kalman fil-
ter) can be employed to synthesize the rotation matrix, al-
lowing us to apply our MODA framework accordingly. As
shown in Table 9, our conclusions remain consistent on such
IMU data.

Table 9. Comparison of Baseline and MODA on PAMAP2 [40]
dataset in the Fully-Supervised and Few-Shot scenarios.

Fully-Supervised Few-Shot

top-1 top-5 top-1 top-5

Baseline (w/o aug.) 59.63% 90.06% 48.92% 84.77%
MODA 63.21% 92.64% 49.88% 86.27%

8. Implementation Details
We begin by providing a detailed description of the exper-
imental setup for the HPE (Sec. 8.1) and HAR (Sec. 8.2)
tasks. Next, we elaborate on the six data augmentation tech-
niques along with their implementation details (Sec. 8.3).
We also detail the training settings for all models (Sec. 8.4).

8.1. Experimental Setup for HPE
Datasets and Settings. We utilize the following public
datasets: AMASS [25] (synthetic), DIP [15], TotalCap-
ture [46], CIP [35] and ANDY [26]. And we also define
four data settings. Specifically, i) for Fully-Supervised



Learning setting, we utilize all samples from the training
sets (ratio = 1) of CIP and AnDy datasets to train the
models, subsequently evaluating them on the correspond-
ing test sets. ii) for Semi-Supervised Learning setting,
we leverage a limited number of labeled samples (ratio =
1/r, r = {8, 16, 32} from CIP and ANDY) for model train-
ing and evaluate it on the corresponding test sets. iii) for
Domain Adaptation setting, we train the model using the
AMASS (synthetic) dataset along with a few samples from
real datasets (CIP, ANDY, DIP and TotalCapture), and eval-
uate its performance on their respective test sets. iv) for
Domain Generalization setting, we exclusively utilize the
AMASS (synthetic) for training the model without incor-
porating any real data, and we then test it on real datasets
(CIP, ANDY, DIP and TotalCapture). Note that we do not
have a Few-Shot Learning setting for HPE as its input mo-
tion sequences are very limited (HPE has only one class)
and do not provide enough data to train a meaningful pose
estimator, leading to extremely high errors.

Evaluation Metrics. Following the previous works [53, 59,
60, 65], we utilize the five metrics to assess our MODA
for HPE task: i) SIP error, which measures the average
global rotation error of upper arms and upper legs in de-
grees; ii) Angular error, which measures the average global
rotation error of all body joints in degrees; iii) Positional
error, which measures the average Euclidean distance error
of all estimated joints in centimeters (cm) with the root joint
(Spine) aligned; iv) Mesh error, which measures the aver-
age Euclidean distance error of all vertices of the estimated
body mesh (SMPL [22]) in centimeters (cm) with the root
joint (Spine) aligned. Noted that the errors in twisting (ro-
tations around the bone) can not be measured by positional
error, but will be reflected in mesh error; and v) Jitter, mea-
suring the mean jerk (time derivative of acceleration) of all
body joints in the global space, which reflects the smooth-
ness [9] of the motion sequence.

8.2. Experimental Setup for HAR
Datasets. In the field of IMU-based HAR, there exist mul-
tiple real datasets such as Human Activities and Postu-
ral Transitions (HAPT) [41], RealWorld HAR (RW) [44],
GesHome [31] and Physical Activity Monitoring Data Set
(PAMAP2) [40]. The reason we did not use these datasets
is that their action categories are very limited (at most 19),
and current methods have already achieved high accuracy
(over 90%). In contrast, we utilize the BABEL [38], a
large dataset with language labels describing the actions be-
ing performed in mocap sequences [25]. Specifically, we
first synthesize the IMU measurements (following Trans-
pose [59]), by placing six virtual IMUs on the human body.
Next, we use the action categories from the BABEL as la-
bels for the synthetic data to train and evaluate the model.
The dataset split is consistent with BABEL.

Settings. We define two data settings. Specifically, i) for
Fully-Supervised Learning setting, we leverage all avail-
able training samples from the BABEL dataset for model
training and then we test it on its test sets. ii) for Few-
Shot Learning setting, we manually reduce the number of
samples in the training set so that each category contains
no more than 10 training samples (denoted as BABEL∗),
considering that certain specific categories of actions are
difficult to collect in real-world situations [20, 50]. Note
that we do not have a Semi-Supervised Learning setting for
HAR as BABEL contains only around 2,000 samples, av-
eraging fewer than 20 samples per category. This limited
data volume is insufficient for semi-supervised learning but
aligns well with a few-shot learning setting. Also, we do
not include Domain Adaptation and Domain Generalization
settings due to the lack of publicly available datasets.

8.3. Implementations of DA Methods
Each data augmentation (DA) technique generates four ad-
ditional augmented versions based on the original train-
ing data. Given the time-series (Property 1) and multi-
modal (Property 2) nature of IMU signals, i.e., x(t) =
{R(t), a(t)}, these techniques are applied separately to the
rotation measurements R(t) and the acceleration measure-
ments a(t). This results in the augmented measurements
R̂i(t) and âi(t), where i = {0, 1, 2, 3} denotes a specific
augmented version. Detailed parameter configurations for
these augmentations are provided below.

Jittering. The augmented measurements R̂i(t) and âi(t)
can be calculated as follows:

R̂i(t) = R(t) + ∆Ri(t),∆Ri(t) ∼ N (µrot
i , (σrot

i )2)
(17)

âi(t) = a(t) + ∆ai(t),∆ai(t) ∼ N (µacc
i , (σacc

i )2) (18)

where µrot
i , σrot

i , µacc
i and σacc

i are hyperparameters for
the i-th jittering agumentation and we set them as fol-
lows: µrot

i = {0, 0, 0, 0}, σrot
i = {1, 0.1, 0.5, 0.01} and

µacc
i = {0.5,−0.5, 0.1,−0.1}, σacc

i = {1, 1, 1, 1}. In prac-
tice, we first sample from a standard Gaussian distribution
(e.g., zroti ∼ N (0, 1)) and use the reparameterization trick
to map it to ∆Ri(t) like:

∆Ri(t) = zroti ∗ σrot
i + µrot

i (19)

Moving Average. The augmented measurements R̂i(t) and
âi(t) can be calculated as follows:

R̂i(t) =
1

Ni

t−ki+Ni−1∑
j=t−ki

R(j), 0 ≤ ki ≤ Ni (20)

âi(t) =
1

Ni

t−ki+Ni−1∑
j=t−ki

a(j), 0 ≤ ki ≤ Ni (21)



where ki and Ni are hyperparameters for the i-th moving av-
erage augmentation, denoting the window size before mo-
ment t and the total window size, respectively. We set them
as follows: ki = {7, 15, 15, 31} and Ni = {15, 15, 31, 31}.
In practice, we utilize different 1D convolution kernels to
implement these operations.

Random Masking. The augmented measurements R̂i(t)
and âi(t) can be calculated as follows:

R̂i(t) = R(t)⊙Mrot
i , Mrot

i [i][j] ∈ {0, 1} (22)

âi(t) = a(t)⊙Macc
i , Macc

i [i][j] ∈ {0, 1} (23)

where ⊙ denotes element-wise multiplication, Mrot
i ∈

R3×3 and Macc
i ∈ R3 denote the mask matrices. We set

the mask ratios to ri = {0.1, 0.25, 0.5, 0.75}, which corre-
spond to masking 1, 3, 6, and 9 elements, respectively.

To ensure that the augmented rotation R̂i(t) and accel-
eration âi(t) at the same time remain consistent with the
original sequence (i.e., R̂i(t) and âi(t) still come from the
same timestamp before augmentation), we first concatenate
R and a along the feature dimension before applying flip-
ping and slicing operations:

x = concatenate(reshape(R), a) (24)

where x ∈ RT×(3×3+3) denotes the concatenated vector.

Flipping. We define flipping as a more general operation
of shuffling the order of the input sequence, where reversal
is a special case. Given a concatenated IMU signal vector
x ∈ RT×12 with T frames, the augmented measurements
x̂i can be calculated as follows:

x̂i = x[oi], oi[j] ∈ {0, 1, ..., T − 2, T − 1} (25)

where oi ∈ RT denotes the order of the i-th augmented se-
quence and each element oi[j] denotes the frame index. We
set o0 as the reversal case, i.e., o0 = [T − 1, T − 2, ..., 1, 0],
and the other three o1, o2, o3 are arranged in a random order.

Slicing. The augmented measurements x̂i can be calculated
as follows:

x̂i = x[si], si = [begini : endi] (26)

where si denotes the segment of i-th augmentation, begini
and endi denote the indexes. We set them as follows:
begini = {0, T

4 ,
T
2 ,

3T
4 } and endi = {T

4 ,
T
2 ,

3T
4 , T}.

MODA. As mentioned in the main paper, we first sam-
ple two random and time-varying perturbations ∆θ̂i(t) and
∆d̂i(t), and generating the IMU signals with Motion-Drift
augmentation according to Eqs. (7), (8), (9), (10) and (11).
The perturbations ∆θ̂i(t) and ∆d̂i(t) follow that:

∆θ̂i(t) ∼ N (µrot
i , (σrot

i )2),∆d̂i(t) ∼ N (µacc
i , (σacc

i )2)
(27)

where µrot
i , σrot

i , µacc
i and σacc

i are hyperparameters for
the i-th MODA agumentation and we set them as follows:
µrot
i = { π

64 ,−
π
64 ,

π
64 ,−

π
64}, σrot

i = { π
32 ,

π
32 ,−

π
32 ,−

π
32}

and µacc
i = {0.5,−0.5, 0.1,−0.1}, σacc

i = {1, 1, 1, 1}.
Similar to Eq. (19), we first sample from standard Gaus-
sian distributions and then use the reparameterization trick
to map them to ∆θ̂i(t) and ∆d̂i(t).

8.4. Train Settings
We implement all models using the PyTorch [36] frame-
work on one NVIDIA GeForce RTX 4090 GPU. PyTorch
version is 2.0.0, and CUDA version is 11.8. During the
training stage for both HPE and HAR tasks, we use the
AdamW [23] optimizer to train all models with a batch size
of 4096. The learning rate is initialized to 0.0001 and de-
cayed by 0.99 per epoch.

9. Additional Experimental Results
9.1. Quantitative Results
9.1.1. Semi-Supervised IMU-based HPE
Tab. 10 and Tab. 11 respectively showcase the results
of training models on two real datasets (CIP [35] and
ANDY [26]), using different ratio of data. It can be
observed that, regardless of the ratio, traditional DA
techniques underperformed, especially under severe data
scarcity (ratio = 1/32), where they yield only minimal im-
provements or even adverse effects. We believe the reason
behind this is that these DA methods violate the proper-
ties of IMU signals, resulting in the generation of unreli-
able training samples. In contrast, MODA’s augmentation
strategy is more aligned with the nature of IMU signals and
closely matches their characteristics, thereby outperforming
other methods and achieving state-of-the-art results on both
benchmarks. Impressively, after applying MODA, training
with just 1/8 of the dataset leads to performance on par with
using the entire training set on both two datasets (10.01 vs.
11.58 and 5.25 vs. 5.20 for Ang Err).

9.1.2. Domain Adaptation IMU-based HPE
The experimental results presented in Tab. 12 and Tab. 13
illustrate that, given the overwhelming presence of syn-
thetic data in the training set, most other DA methods suf-
fer significant performance degradation to varying degrees.
Again, we believe this decline stems from a lack of con-
sideration for the inherent characteristics of IMU signals,
along with an inability to bridge the domain gap between
real and synthetic data. On the contrary, our proposed
MODA aligns closely with the properties of IMU signals
enhances the realism of synthetic data by simulating drift,
seamlessly resolving these dual challenges and resulting in
a remarkable performance improvement. Specifically, com-
pared to the baseline, positional error decreased by 0.63 cm



Table 10. Comparison with other DA methods in the Semi-Supervised Learning scenario, on the CIP [35] dataset.

CIP (1/8) CIP (1/16) CIP (1/32)

SIP Err Ang Err Pos Err Mesh Err Jitter SIP Err Ang Err Pos Err Mesh Err Jitter SIP Err Ang Err Pos Err Mesh Err Jitter

Baseline 25.35 16.42 9.31 11.58 0.12 25.77 17.45 9.83 11.42 0.14 35.21 37.83 16.41 20.57 0.29

Jittering 23.62 15.50 9.01 10.41 0.12 23.87 16.25 9.33 10.91 0.13 33.93 38.51 16.77 21.78 0.37
Moving Average 24.58 16.53 9.33 11.06 0.21 25.92 17.83 9.95 11.67 0.20 34.77 38.42 16.90 21.70 0.44
Random Mask 23.94 16.23 9.22 10.50 0.11 25.44 16.68 9.62 11.24 0.14 33.28 35.43 15.68 20.33 0.25
Flipping 22.99 13.75 8.44 9.65 0.11 23.95 16.37 8.61 9.83 0.11 33.71 37.78 16.57 22.31 0.24
Slicing 22.40 13.53 8.15 9.43 0.11 23.77 16.09 9.06 10.57 0.12 31.22 36.34 15.07 19.90 0.27

MODA (ours) 22.14 11.58 8.08 9.07 0.06 23.28 11.97 8.31 9.28 0.06 30.74 29.29 13.49 17.57 0.13

Table 11. Comparison with other DA methods in the Semi-Supervised Learning scenario, on the ANDY [26] dataset.

ANDY (1/8) ANDY (1/16) ANDY (1/32)

SIP Err Ang Err Pos Err Mesh Err Jitter SIP Err Ang Err Pos Err Mesh Err Jitter SIP Err Ang Err Pos Err Mesh Err Jitter

Baseline 10.67 7.27 3.90 4.56 0.04 11.85 8.36 4.67 5.56 0.04 11.96 8.87 4.80 5.57 0.05

Jittering 10.95 8.08 4.27 5.00 0.06 13.10 9.99 5.58 6.61 0.06 13.18 11.72 5.76 6.67 0.06
Moving Average 10.96 7.35 4.02 4.67 0.07 12.23 7.85 4.63 5.43 0.06 12.76 9.89 5.27 6.24 0.08
Random Mask 11.75 7.80 4.37 5.09 0.04 13.39 10.73 5.87 7.03 0.06 12.74 11.08 5.97 7.34 0.05
Flipping 10.51 5.79 3.56 4.00 0.03 11.43 7.35 4.22 4.90 0.03 12.06 9.07 4.67 5.47 0.05
Slicing 10.19 5.91 3.53 4.06 0.03 11.45 7.61 4.40 5.07 0.03 12.53 8.72 4.86 5.78 0.04

MODA (ours) 10.07 5.25 3.38 3.83 0.02 11.24 7.17 4.12 4.88 0.03 12.01 7.82 4.46 5.13 0.03

(9%), 1.5 cm (24%), 0.91 cm (11%), and 3.23 cm (34%)
across the four real datasets further proving MODA’s supe-
riority over other DA methods.

9.1.3. Domain Generalization IMU-based HPE

As shown in Tab. 14 and Tab. 15, Jitter soars by roughly
50% across most datasets compared to the Domain Adap-
tation scenario, with a sharp decline in prediction accuracy
(SIP and Angular errors increase by 5-10 degrees). We be-
lieve this is due to the fact that models trained exclusively
on synthetic data struggle to generalize effectively when ap-
plied to real-world datasets, thereby generating highly jit-
tery and inaccurate motion sequences. Similar to the Do-
main Adaptation scenario, MODA aligns well with the IMU
properties and thus does not amplify the domain gap, result-
ing in superior performance. Specifically, MODA simulates
IMU drift to ensure the generated data better reflect real-
world data distribution, allowing it to predict accurate and
stable motion sequences, outperforming other DA methods
by a large margin (The angular error decreases by 3.9, 4.64,
6.05 and 1.15 degrees on the four datasets, respectively).

9.2. Qualitative Results

We also present a video that compares motion sequences
predicted by the model with various data augmentation
methods to highlight MODA’s superiority. The visualiza-
tion results clearly illustrate that MODA consistently out-
performs others, keeping prediction accuracy and motion
smoothness for both simple and vigorous actions. Please
see the video for more details.

10. Limitations and Future Work
Magnetic Fields Interference. MODA simulates IMU drifts
to generate variations in IMU readings for identical motion
sequences. However, another source of variation, external
interference from surrounding magnetic fields, is not ad-
dressed in this paper. We will explore DA methods for it
in future work.
Bias in Motion Data. Since MODA is applied to motion
data, it is also affected by their biases. Specifically, while
extensive human motion datasets are available, certain ac-
tions, such as slipping and falling, are inherently challeng-
ing to capture. We will collect datasets covering more rare
and critical motion types in future work.



Table 12. Comparison with other DA methods in the Domain Adaptation scenario, on the CIP [35] and ANDY [26] datasets.

CIP [35] ANDY [26]

SIP Err Ang Err Pos Err Mesh Err Jitter SIP Err Ang Err Pos Err Mesh Err Jitter

Baseline 17.02 12.06 6.99 8.31 0.12 15.99 9.89 6.15 7.17 0.05

Jittering 19.39 14.37 7.98 9.42 0.11 16.88 12.07 7.45 8.90 0.04
Moving Average 20.61 16.09 8.98 10.84 0.15 16.63 11.95 7.15 8.66 0.06
Random Mask 19.71 14.50 8.13 9.51 0.10 17.19 12.88 8.02 9.57 0.04
Flipping 19.31 14.18 8.08 9.46 0.10 16.51 11.45 7.52 8.86 0.04
Slicing 19.29 14.22 8.07 9.47 0.10 16.53 11.48 7.50 8.02 0.04

MODA (ours) 15.27 11.04 6.36 7.54 0.10 12.22 8.17 4.65 5.51 0.04

Table 13. Comparison with other DA methods in the Domain Adaptation scenario, on the DIP [15] and TotalCapture [46] datasets.

DIP [15] TotalCapture [46]

SIP Err Ang Err Pos Err Mesh Err Jitter SIP Err Ang Err Pos Err Mesh Err Jitter

Baseline 20.54 14.95 8.58 10.24 0.10 20.48 16.69 9.40 10.76 0.12

Jittering 21.43 16.27 8.91 10.77 0.09 20.49 16.87 9.43 10.79 0.11
Moving Average 24.36 18.70 10.36 12.51 0.11 22.98 18.17 10.43 11.81 0.14
Random Mask 22.65 17.13 9.39 11.23 0.08 20.49 16.52 9.45 10.74 0.11
Flipping 21.82 16.24 9.14 10.78 0.07 19.51 16.15 9.00 10.34 0.10
Slicing 21.99 16.40 9.22 10.87 0.08 19.51 16.16 9.01 10.34 0.10

MODA (ours) 19.43 13.54 7.67 9.19 0.07 14.24 12.54 6.17 7.23 0.10

Table 14. Comparison with other DA methods in the Domain Generalization scenario, on the CIP [35] and ANDY [26] datasets.

CIP [35] ANDY [26]

SIP Err Ang Err Pos Err Mesh Err Jitter SIP Err Ang Err Pos Err Mesh Err Jitter

Baseline 29.05 18.39 9.78 11.35 0.25 25.39 16.43 9.64 11.36 0.10

Jittering 29.57 18.53 9.99 11.58 0.22 27.48 16.93 10.13 11.48 0.10
Moving Average 31.59 20.06 10.82 12.56 0.35 28.35 17.00 10.11 11.47 0.13
Random Mask 30.29 18.78 10.08 11.65 0.23 26.36 16.55 9.68 11.05 0.09
Flipping 30.29 18.42 9.88 11.51 0.26 26.12 16.83 9.66 11.50 0.10
Slicing 30.30 18.49 9.25 11.53 0.26 26.12 16.86 9.70 11.50 0.10

MODA (ours) 27.78 14.59 9.17 10.12 0.14 22.26 11.79 7.72 7.20 0.05

Table 15. Comparison with other DA methods in the Domain Generalization scenario, on the DIP [15] and TotalCapture [46] datasets.

DIP [15] TotalCapture [46]

SIP Err Ang Err Pos Err Mesh Err Jitter SIP Err Ang Err Pos Err Mesh Err Jitter

Baseline 29.24 19.46 10.30 12.52 0.17 26.28 17.58 8.74 10.02 0.25

Jittering 28.72 19.51 10.46 12.55 0.17 25.29 18.04 9.40 10.62 0.22
Moving Average 30.97 21.34 11.39 13.68 0.25 28.62 19.49 10.15 11.48 0.30
Random Mask 28.77 19.86 10.36 12.52 0.17 28.65 18.87 9.75 11.23 0.22
Flipping 29.17 19.03 9.84 12.07 0.18 25.80 17.99 9.33 10.50 0.25
Slicing 29.17 19.19 9.90 12.07 0.18 25.90 18.15 9.40 10.57 0.25

MODA (ours) 28.37 13.41 8.25 9.44 0.10 25.42 16.43 8.23 9.38 0.12
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