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Supplementary Material

We highly encourage the readers to check out our project
page for video results of baselines and MinT.

A. Details on Rotary Position Embedding
A.1. Derivation of RoPE
We detail the derivation conducted in Sec. 3.1 of the main
paper. Our derivation mostly follows [31, 38, 45] and only
provides an intuitive motivation for our method. We refer
readers to their papers for more rigorous results.
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Then, RoPE rotates each complex number by an angle θl,
which is achieved as element-wise multiplication:

q̃n = q̄n ⊙ einθ, k̃m = k̄m ⊙ eimθ, (2)

where θ is determined by the position l of each element in
a vector. We follow prior works [25, 45] to use:

θ =
[
θ0, · · · , θd/2−1

]
, θl = 10000−2l/d. (3)

Eq. (3) indicates that each θl is a fixed value, and thus the
rotation results in Eq. (2) is only decided by the vectors’
index n and m. This is why in the main paper, we only
consider a single θbase instead of θ for different elements.

We can now calculate the attention between q̃n and k̃m:
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Since we are interested in the bias introduced by RoPE in
attention, we assume all queries qn and all keys km are
the same, so that their attention values without RoPE is the
same. Empirically, we find that query and key vectors in-
deed have similar values in our DiT due to the use of Layer
Normalization [5]. Thanks to the periodic property of sin (·)
and cos (·), from Eq. (4), we have An,m = Am,n, i.e., , the
attention bias between qn and km is only affected by the
absolute distance between the two vectors, |n−m|.

The original RoPE paper [45] proves that the upper
bound of An,m decays monotonically with the distance
|n − m| until around 40. Since the RoPE used in the tem-
poral cross-attention layer only encodes vectors using the
temporal frame index, and our video DiT is trained on video
tokens with up to around 50 frames, we roughly preserve
the monotonicity of RoPE. As we will see in Appendix A.3,
while there are some fluctuations of An,m in the long range,
the long-term decay makes their values significantly low.

A.2. Proof of the Property of ReRoPE
In Sec. 3.2 of the main paper, we propose to rescale all
events to a fixed length L. For a timestamp t lying in the
n-th event, we transform it as:

t̃ =
(t− tstartn )L

tendn − tstartn

+(n− 1)L, s.t. tstartn ≤ t ≤ tendn ,

t̃mid
n = L/2 + (n− 1)L. (5)

After transformation, the distance between a video token in
the n-th event and the middle timestamps of this event is:∣∣t̃− t̃mid

n
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− 1

2
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Next, we prove that it satisfies the three desired properties
of the temporal cross-attention:
(i) For video tokens within the time span of an event, they
should attend the most to the text embedding of this event.
Proof For tstartn ≤ t ≤ tendn , we have:
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thus,
∣∣t̃− t̃mid

n

∣∣ ≤ L/2. For any m-th event with m ̸= n,
its distance to this video token is:∣∣t̃− t̃mid
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https://mint-video.github.io/
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Figure 1. Comparison of ReRoPE with different rescaling
length L. We use the same random vector for video tokens and
text embeddings to only visualize the bias introduced by positional
encoding. We visualize the case where videos have a temporal di-
mension of 50, and there are three temporal captions.

Therefore, we have:∣∣t̃− t̃mid
m

∣∣ ≥ L/2 ≥
∣∣t̃− t̃mid

n

∣∣ , ∀ m ̸= n. (10)

Since RoPE attention decays monotonically with the dis-
tance, we reach the property.
(ii) For an event, the attention weight should peak with the
video token at the midpoint of its time span, and then de-
crease towards the boundary of the event.
Proof When a video token is at the midpoint of an event,
we have t̃ − t̃mid

n = 0. Thus, the attention weight will be
the highest. In addition, Eq. (6) increases when t goes from
tmid
n to tstartn or tendn , leading to a decreased weight.

(iii) The video token at the transition point between two
events should attend equally to their text embeddings.
Proof For t = tstartn or tendn , we always have the distance∣∣t̃− t̃mid

n

∣∣ = L/2. Thus, the attention value is the same
for video tokens at event borders. This is only possible in
ReRoPE as we rescale all events to have the same length.

A.3. Visualizations of ReRoPE
In Sec. 4.5 of the main paper, we show that using different
rescaling length L in ReRoPE leads to similar results. Fig. 1
visualizes the cross-attention map using L = 4, 8, and 16.
The three attention maps are indeed similar, which explains
why the performances are close. We also notice that with
a higher L, the attention map of each event becomes more
concentrated. It would be an interesting direction to study
its effect in depth, which we leave for future work.

B. Detailed Experimental Setup
In this section, we provide full details on the datasets, base-
lines, evaluation settings, and the training and inference im-
plementation details of our model.

B.1. Training Data
Before this work, there are mainly two types of video
datasets that annotate open-set event captions and their pre-
cise timestamps. One such field is dense video caption-
ing [20, 23, 58]. However, these datasets are limited in scale
(usually fewer than 10k videos), which makes it impossible
to fine-tune a large-scale video generator. Another field is
video chaptering [54]. However, the temporal captions here
are high-level chapter segmentation, where each annotated
event is usually longer than one minute. This is too long for
current video diffusion models to be trained on.

Since our model requires large-scale and fine-grained
video event annotations, we manually source videos from
existing datasets [9, 53] and annotate them, resulting in
around 200k videos. To condition the model on scene cuts,
we run TransNetV2 [44] to detect scene boundaries on an-
notated videos with a confidence threshold of 0.5.

Fig. 2 present some basic statistics of our dataset. While
our training videos have varying lengths, the number of
events per video and the average event length are similar,
which makes model training easier.
Data processing. The training dataset contains videos of
different lengths, resolutions, and aspect ratios. Following
common practice [39, 57], we use data bucketing, which
groups videos into a fixed set of sizes. Overall, we sample
videos up to 512 resolution, and 10s during training. We
pad to or subsample 4 temporal captions for batch training.

B.2. Evaluation Datasets
HoldOut. We randomly sample 2k videos from our train-
ing data as a holdout testing set. The prompts here are in-
distribution with a minimum gap to training data.
StoryBench [7] consists of videos collected from
DiDeMo [4], Oops [12], and UVO [51] datasets. It anno-
tates each video with a background caption and one or more
temporal captions similar to our format. We treat their back-
ground caption as the global caption in our setting, showing
our model’s generalization to out-of-distribution prompts.
We filter out videos with only a single event, leading to
around 3k testing samples.
VBench [21] is a comprehensive benchmark that tests dif-
ferent aspects of a video generation model. It has 16 evalu-
ation dimensions, each with a carefully collected list of text
prompts. Since we are interested in the dynamics of gen-
erated videos, we choose the Dynamic Degree dimension,
which provides 72 prompts. Following the official evalua-
tion protocol, we run each model to generate 5 videos using
each prompt with 5 random seeds.
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Figure 2. Basic statistics of our training dataset. We show the distribution of video length, the number of events per video, and the length
of individual events. Most videos contain 2 to 4 events, and most events are under 5s.

B.3. Baselines
We only compare to methods that can generate smoothly
connected events and have released their code.
MEVG [35] is the state-of-the-art multi-event video gener-
ation method. Given a sequence of event prompts, it gener-
ates the first video clip using the first event prompt. Then,
to generate the next event, it runs DDIM inversion [43] to
obtain the inverted noise latent of the previous clip, which
is used to initialize the current noise latent. Then, when de-
noising the current latent, it also introduces several losses
to enforce latent at adjacent frames to be similar. Origi-
nal MEVG builds upon LVDM [15] and VideoCrafter [8]
which are outdated. For a fair comparison, we re-implement
it based on our base model. As far as we know, there is no
prior work on inverting a rectified flow model, so we follow
DDIM inversion to implement RF inversion which achieves
similar results. To handle both global and temporal cap-
tions, we generate the first clip by concatenating the global
caption and the first temporal caption. We keep other losses
and hyper-parameters the same as in MEVG1.
AutoReg. We fine-tune our base model to support initial
frame conditioned video generation. The method is similar
to MEVG, where we generate one event based on its own
caption and the last frame of the previous clip.
Concat is a naive baseline that simply concatenates the
global caption and all temporal captions to form a long
prompt, and generates a video from it.
Remark. Since both MEVG and AutoReg are autoregres-
sive methods, they can only generate fixed-length videos for
each event. To enable comparison, we simply assume that
the testing events all have the same duration when comput-
ing metrics. For Concat, it cannot separate the generation
of different events. We thus assume all events are uniformly
distributed in the generated video.

B.4. Evaluation Metrics
We identify three key aspects in multi-event text-to-video
generation: visual quality, event text alignment, and event
transition smoothness. We report common metrics such as

1MEVG did not release the code at the time of paper submission. We
obtain the official code from authors through private email communication.

FID [18], FVD [47] for visual quality, and per-frame CLIP-
score [17, 41] for text alignment. We have tried more ad-
vanced metrics such as X-CLIP-score [34], but found it to
perform similarly as CLIP-score.

It is well-known that traditional automatic metrics are
not aligned with human perceptions. Recent works show
that fine-tuning multi-modal LLMs on human feedback
data can lead to more human-aligned video quality assess-
ment metrics [14]. We take the state-of-the-art method
VideoScore which outputs five scores for a video. We use
the visual quality and dynamic degree output for visual
quality, the text-to-video alignment output for text align-
ment, and the temporal consistency output for event transi-
tion smoothness. We further run TransNetV2 [44] to com-
pute the average number of cuts in generated videos to mea-
sure event transition smoothness.

For visual quality and event transition smoothness, we
compute relevant metrics on the entire video. We have also
computed the visual quality of each event, and found it to be
positively correlated with video-level results. For text align-
ment, since we care about event generation, we take the start
and end timestamps of each event, crop out a sub-clip from
the generated video, and compute metrics between this sub-
clip and the corresponding event prompt.

B.5. Implementation Details

Base model. Our base text-to-video generator adopts the
latent Diffusion Transformer framework [37]. It leverages a
MAGVIT-v2 [56] as the autoencoder and a deep cascade of
DiT blocks as the denoising backbone. The autoencoder is
similar to the one in CogVideoX [55], which downsamples
the spatial dimensions by 8× and the temporal dimension
by 4×. Our backbone has 32 DiT blocks. Each block is
similar to the one in Open-Sora [25], which consists of a
3D self-attention layer running on all video tokens, a cross-
attention layer between video tokens and T5 text embed-
dings [42] of the input prompt, and an MLP. We do not use
absolute positional encoding on video tokens. Instead, we
apply RoPE in self-attention, which is factorized into spatial
and temporal axes, similar to [25]. Finally, we use FlashAt-
tention [11] in both self-attention and cross-attention.
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Prompts: “A woman is writing on a paper” → “She looks at the right as a man holding a clipboard is coming to her” → “They look at each other and discuss with the paper”

Figure 3. Qualitative comparisons of T2V.

Prompts: “A woman stands with head turns left and arms crossed” → “looks at the camera, puts her hands down and laughs” → “puts her left hand resting at waist level”

Prompts: “A woman stands straight with a smile” → “smiles with her hands closed at her stomach” → “begins to laugh while her torso is slightly bent forward”

Prompts: “A woman is writing something on a table” → “looks upwards with a smile and spreads her arms” → “resumes to write something on the table”

Prompts: “A man holds a tablet in his left hand and uses it” → “points his right hand to some blue bottles” → “looks at the tablet again” → “turns to look at the camera”

Prompts: “A woman is tapping on a phone” → “extends the phone forward with both hands to take a selfie” → “lowers the phone and taps on it” → “adjusts her hair”

Prompts: “A woman waves with her right hand” → “talks while gesturing her both hands” → “makes a heart gesture” → “gives a blow kiss with her right hand”

Figure 4. More T2V results from MinT. Please see our project page for more results.

The base model adopts the rectified flow training objec-
tive [29, 30]. We follow Stable Diffusion 3 [13] to choose
the sampling parameters for the diffusion process.

MinT model. We fine-tune MinT from the base model to
enable temporal caption control. We copy weights from
the original cross-attention layer to initialize our added tem-
poral cross-attention layer to accelerate convergence, since
both layers take in the same text modality. Following prior
works [26], we introduce a scaling factor that is initialized
as 0, and we pass it through a Tanh(·) activation to multi-
ply with the temporal cross-attention layer output. Such a
design has been shown to stabilize model training.

Training. We use AdamW [33] to fine-tune the entire
model with a batch size of 512 for 15k steps. We use a low
learning rate of 1× 10−5 for the pre-trained weights, and a
higher one of 1 × 10−4 for the added weights. Both learn-
ing rates are linearly warmed up in the first 1k steps and stay

constant. A gradient clipping of 0.05 is applied to stabilize
training. To apply classifier-free guidance (CFG) [19], we
randomly drop the text embedding of global and temporal
captions (i.e., setting them as zeros) with a probability of
10%. Notice that when dropping the temporal captions, we
drop all events together and also set the event timestamps
to zeros. We implement our model using PyTorch [36] and
conduct training on NVIDIA A100 GPUs.

Inference. We use the rectified flow sampler [30] with 256
sampling steps and a classifier-free guidance [19] scale of
8 to generate videos. We also use interval guidance [24]
in CFG to mitigate the oversaturation issue, which only ap-
plies CFG between [25, 100] sampling steps. We have tried
using separate CFG for global and temporal captions simi-
lar to in [6], but did not find it to improve results.

https://mint-video.github.io/#more-our-results
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Prompts: “A bear stands in a river” → “It catches a fish from the water” → “It holds the fish with its powerful jaw”
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Prompts: “Close-up of a static bike wheel” → “zooms out showing the rider pedaling” → “speeding up on the street”
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Prompts: “A cat walks towards a bowl” → “It laps water with its tongue” → “It lifts its head and looks around”

Short prompt: “a cat drinking water”

Short prompt: “a bear catching a salmon in its powerful jaws”

Short prompt: “a bicycle accelerating to gain speed”

Figure 5. Prompt enhancement results on VBench. We can generate more interesting videos from a simple prompt. This highlights the
flexible dynamics control ability brought by the temporal captions. Please see our project page for video results.

C. More Results

C.1. More Qualitative Results on T2V
Fig. 3 presents more qualitative comparisons with baselines.
Concat only generates the woman writing on a paper while
ignoring the subsequent events. AutoReg is able to synthe-
size a smooth transition between the first and the second

event, but it fails to generate the third event. This is be-
cause conditioning on generated frames leads to video stag-
nation and results in frozen frames. MEVG generates each
event well, but they are connected with abrupt shot transi-
tions and completely different subjects. This is due to the
free-form event captions we use, which change the subjects
frequently. As a result, the inversion technique in MEVG

https://mint-video.github.io/#prompt-enhancement


Prompts: “The man plays the piano” → “He takes some papers and shakes them in front of the camera” → “He puts the papers back”
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Prompts: “The man is talking while holding the phone” → “A close-up shot of the man…” → “A medium shot of the man…”
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Figure 6. Generated videos with and without scene cut input. In each example, the first row is generated by inputting the scene cut
at the illustrated timestamps, while the second row is by zeroing out the scene cut input. When using the scene cut, the model is able to
generate a shot transition at desired timestamps, while keeping the subject consistent. In the second example, the model generates smooth
zoom-in and zoom-out effects when zeroing out scene cuts. Please see our project page for more results.

cannot preserve the subjects well. So far, there is no in-
version method designed for rectified flow models. Over-
all, MinT is the only method that successfully generates all
events with smooth transitions and consistent entities.

We show more qualitative results of MinT in Fig. 4.
Human-related subjects are known to be challenging in vi-
sual generation tasks. Yet, the results demonstrate our flex-
ible control of human action sequences and time lengths.

C.2. Prompt Enhancement
Our prompt enhancer is built upon GPT-4 [3] and can ex-
tend a short prompt to a detailed global caption and mul-
tiple temporal captions with reasonable event timestamps.
We provide the instruction we used on our project page. It
is inspired by recent works [32, 35] and uses in-context ex-
amples from our dataset for better performance.

We show more prompt enhancement results using
VBench prompts in Fig. 5. Thanks to the powerful LLM,
our prompt enhancer can extend a short prompt to rea-
sonable sequential events, covering rich object motion and
camera movement. MinT can then generate more interest-
ing and “eventful” videos from the extended prompt. This
highlights the unique capability of our method, opening up a
new direction towards more user-friendly video generation.

C.3. Scene Cut Conditioning
As shown in the ablation, removing scene cut conditioning
leads to undesired shot transitions in generated videos. A

closer inspection reveals that the generation of cuts is sen-
sitive to the text prompt of an event. When it contains a
description of the camera shot (e.g., “a close-up view of”),
it is more likely to introduce a cut. In contrast, explicitly
conditioning on scene cuts frees us from this issue.

We show some qualitative scene cut control results in
Fig. 6. MinT is able to generate shot transitions at desired
timestamps, while preserving subject identities. When zero-
ing out the scene cut input, we can get cut-free videos which
validates our design. Finally, we show that our model can
switch between sudden camera changes or gradual zoom-in
and zoom-out effects, enabling fine-grained control.

An interesting direction is to learn different types of
scene transitions such as jump cut, dissolve, and wipe.
Since our goal is to retain training data instead of learning
fancy transition control, we leave this for future work.

C.4. Event Time Span Control

MinT supports fine-grained control of event time span. To
show this, we take a sample from our dataset and offset
the start and end timestamps of all events by a specific
value. Fig. 7 presents the results, where each video gen-
erates events following its new timing. In addition, we can
roughly keep the appearance of the main subject and back-
ground unchanged. MinT is the first video generator in the
literature that achieves this control ability. We view it as an
important step towards a practical content generation tool.

https://mint-video.github.io/#scene-cut-condition
https://mint-video.github.io/src/vbench/prompt.txt


Prompts: “A woman stands with head turns left and arms crossed” → “looks at the camera, puts her hands down and laughs” → “puts her left hand resting at waist level”
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Figure 7. Generated videos with different event time spans. In each example, we offset the start and end timestamps of all events by a
specific number of seconds. Results show that MinT enables fine-grained event timing control while keeping the subjects’ appearances to
be roughly the same. This capability is very useful for controllable video generation. Please see our project page for more results.

Method FID ↓ FVD ↓ CLIP-score ↑

Task: T2V (a.k.a. story generation in [7])

Phenaki 273.41 998.19 0.210
Ours 40.87 484.44 0.284

Task: I2V (a.k.a. story continuation in [7])

Phenaki 240.21 674.5 0.219
Ours 21.85 314.59 0.273

Table 1. Comparison with Phenaki on StoryBench. We com-
pare with the zero-shot variant Phenaki-Gen-ZS in their paper [7]
since our model is not fine-tuned on StoryBench. We clearly out-
perform Phenaki across all metrics in both tasks.

C.5. StoryBench Comparison with Phenaki
The original StoryBench paper [7] proposed a baseline for
their dataset, which runs Phenaki [48] to generate events
in an autoregressive way. However, they conducted evalua-
tion on a much lower resolution (160×96), and neither their
code nor pre-trained weights were released, making a di-
rect comparison hard. We still compare with them in Tab. 1
for completeness. We only report metrics that both papers
evaluate, which cover visual quality (FID, FVD) and text
alignment (CLIP-score). MinT significantly outperforms
Phenaki across all metrics in both T2V and I2V tasks. This
demonstrates the effectiveness of fine-tuning from a large-
scale pre-trained video model.

C.6. Comparison with SOTA Video Generators
To show that sequential event generation is a common fail-
ure case of even SOTA video generators, we present more
results in Fig. 10 and Fig. 11. One surprising observation
we had is that, when using prompts following the official
guideline of these models (e.g., using the LLM provided
by CogVideoX to enhance prompts), the model only gen-
erates the first event and ignores all subsequent ones. Only

if we directly concatenate event captions without specify-
ing global properties such as camera motion, background
description, and detailed subject attributes (i.e., directly use
prompts like “A person first do A, then do B, and finally do
C”), the model starts to generate some events transitions.2

One possible cause is that in the training data of these mod-
els, videos with sequential events are never annotated with
such detailed global properties. However, since we do not
have access to their training details, we can’t figure out the
true reason behind it. Therefore, we just use naively con-
catenated prompts to generate all results. The prompts we
used for these models can be found on our project page.
Notably, this workaround prevents us from using detailed
captions to control the scene and subjects, which greatly af-
fects the controllability of these models.

Still, when prompted with a text that contains multiple
events, these models have three common failure modes:

1. Only generates partial events, and completely ignores the
remaining ones. For example, in the third example in
Fig. 10, all models miss the “blow kiss” action;

2. Generates events in the wrong order or “merge” multiple
events. For example, in the last example in Fig. 10, Kling
1.5 generates the man with his hand under his mouth at
the beginning of the video. Yet, this should happen last;

3. Bind wrong actions or properties to subjects. For exam-
ple, in the first example in Fig. 11, Gen-3 Alpha generates
a woman coming into the frame instead of a man.

Remark. There might be other ways to fix this issue without
using temporally-grounded captions as in MinT. For exam-
ple, one may fine-tune the model on video datasets anno-
tated with detailed sequential event information [52]. Still,
this will not allow precise control over the start and end
times of events, which is a unique capability of our model.

2The detailed prompt does not exceed the maximum input text length
of these models, so context length is not the reason here.

https://mint-video.github.io/#time-control
https://mint-video.github.io/src/vs_sota/prompts.txt


Prompts: “The time-traveler stands in the center of an ancient civilization” → “triggers a swirling vortex” → “enters a Renaissance market and picks up a clothes” → “another leap through a futuristic portal and enters a cityscape full of skyscrapers”

Prompts: “The camera pans over a vibrant cyberpunk city with neon lights” → “a hacker is typing on a keyboard” → “triggers a red-alert security barrier” → “the hacker is teleported to a virtual space and engaged in a tense duel with digital virus”

Figure 8. Generated videos with extreme dynamics. We prompt MinT to generate scene cuts at event boundaries, leading to explicit
scene changes and large dynamics.

Prompts: “The astronaut picks up a sparker” → “lights up the sparkler” → “waves the lit sparkler in a circle” → “holds up the sparkler at eye level and looks at it”

Prompts: “Two warriors on a cliff” → “One warrior attacks” → “The other one defends, causing sparks to fly from the swords' contact” → “They circle each other”

Prompts: “Starships glide through space” → “gets attacked by an energy beams” → “combusts into a fiery explosion” → “The ego starship retreats to evade conflicts”

Prompts: “A cat is lying on a yoga mat” → “stretches its back to a dog pose” → “raises its front paw as a tree pose” → “lowers its paw and moves to a cobra pose”

Figure 9. Generated videos with out-of-distribution prompts. After fine-tuning, MinT still possesses the base model’s ability to generate
novel concepts. Please see our project page for more results.

Quantitative comparison with Kling. Running Kling on
all test prompts will incur unreasonable API costs (∼$5k).
Therefore, we ran it on the 200 prompts used in our user
study, and conducted a user study with 20 participants per
prompt similar to our main experiment. Due to a weaker
base model, MinT achieves a lower Visual Quality (31.55%
win rate). Nevertheless, MinT clearly outperforms Kling in
all three event-related metrics (73.18% in Text Alignment,
69.93% in Event Timing, and 68.27% in Event Transition).

C.7. Generating Videos with Extreme Dynamics
We prompt MinT to generate videos with extreme dynam-
ics. Thanks to the scene cut conditioning, we enable explicit
scene changes in generated videos as shown in Fig. 8.

C.8. Out-of-Distribution Prompts
MinT is fine-tuned on temporal caption videos that mostly
describe human-centric events. In the paper, we have shown
some non-human results such as animals and traffics. Here,
we show that our model still possesses the ability to gen-
erate novel concepts and their combinations, which is an
important property of large-scale pre-trained video genera-
tors. As shown in Fig. 9, MinT generates out-of-distribution
characters such as warriors and astronaut, scenes such as
starships in the space, and non-existing events such as a cat
doing yoga. This proves that our model does not forget the
rich pre-training knowledge in the base model.

D. Limitations and Future Works
MinT is fine-tuned from a pre-trained text-to-video diffu-
sion model, and thus we are bounded by the capacity of the
base model. For example, it is challenging to generate hu-
man hands or scenes involving complex physics.

When generating an event involving multiple subjects,
MinT may fail to associate attributes and actions to the cor-
rect subject. Similar to the temporal binding problem we try
to address in this paper, we believe this issue can be solved
with spatial binding. For example, by grounding subjects
with bounding boxes and attribute labels [26, 27, 50].

Finally, MinT sometimes fails to associate entities speci-
fied in the global caption and temporal captions. Such asso-
ciation requires complex reasoning of the text conditioning,
and may be resolved by simply scaling up the training data.

Please refer to our project page for video examples and
detailed analysis of these failure cases.
Future works. It is interesting to enhance our model with
recent progress in training-free long video generation tech-
niques [16, 40, 49]. Another direction is to combine MinT
with video personalization methods [10, 22, 28, 32] to en-
able both fine-grained control within a shot and subject con-
sistency across shots for minute-long video creation.

https://mint-video.github.io/#ood-results
https://mint-video.github.io/#failure-case
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Prompts: “A woman is tapping on a phone” → “extends the phone forward with both hands to take a selfie” → “lowers the phone and taps on it” → “adjusts her hair”
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Prompts: “A man holds a tablet in his left hand and uses it” → “points his right hand to some blue bottles” → “looks at the tablet again” → “turns to look at the camera”
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Prompts: “A woman waves with her right hand” → “talks while gesturing her both hands” → “makes a heart gesture” → “gives a blow kiss with her right hand”
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Prompts: “A woman takes a sip from a cup and puts it down” → “A man is writing something on the paper” → “They both start thinking with their left hand under their mouth”
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Figure 10. More comparisons with SOTA video generators. We run SOTA open-source models CogVideoX [55] and Mochi [46], and
commercial models Kling 1.5 [2] and Gen-3 Alpha [1] using their online APIs. Please see our project page for video results.

https://mint-video.github.io/#compare-with-sota
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Prompts: “A man lifts his head and arms up” → “lowers his head and arms down” → “moves his head and arms to his left” → “moves his head and arms to his right”

Prompts: “A man is typing on a laptop” → “touches his headphone with his right hand” → “closes the laptop with his left hand” → “stands up”
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Prompts: “A woman is writing something on a table” → “looks upwards with a smile and spreads her arms” → “resumes to write something on the table”
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Prompts: “A woman stands straight with a smile” → “smiles with her hands closed at her stomach” → “begins to laugh while her torso is slightly bent forward”
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Figure 11. More comparisons with SOTA video generators. We run SOTA open-source models CogVideoX [55] and Mochi [46], and
commercial models Kling 1.5 [2] and Gen-3 Alpha [1] using their online APIs. Please see our project page for video results.

https://mint-video.github.io/#compare-with-sota
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