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Figure 1. User Study v.s. Automatic Metric. Automatic metrics
and human evaluations show a positive correlation.

Table 1. Performance for Customized Audio Generation on
MovieBench.

Dataset MCD ↓ WER(%) ↓ SIM-o ↑
YourTTS [2] 8.41 0.26 0.97

xTTS [3] 8.31 0.28 0.98
VALL-E-X [17] 4.48 1.25 0.97

F5-TTS [4] 3.12 0.20 0.98

1. User Study

To examine the correlation between automatic evaluation
metrics and human judgment, we compare F1ID scores
with human voting results across three models: AutoStory,
Magic-Me, and CogVideoX, as shown in Figure 1. The re-
sults indicate a positive correlation between the two evalu-
ation methods, with models achieving higher F1ID scores
also receiving more favorable human votes. Specifically,
AutoStory demonstrates the highest alignment, with an
F1ID of 54.34% and a human voting score of 43.40%, sug-
gesting strong consistency between automatic and human
evaluations. While Magic-Me and CogVideoX also follow
this trend, their human evaluation scores exceed their F1ID
values by a notable margin, indicating that certain qualita-
tive factors influencing human preference may not be fully
captured by automatic metrics.

2. Customized Audio Generation

Customized Audio Generation involves creating cus-
tomized soundtracks for specific characters and emotional
cues. We conduct experiments on 6 movies from the test
set, splitting the audio of each character into two parts: half
as the test set and half as reference audio for evaluation.
Following prior works [3, 4], we evaluate performance on a
cross-sentence task, where the model synthesizes a reading
of a reference text in the style of a given speech prompt.

Table 2. Quality Evaluation for Portrait Image of Character on
Movie Level. Character bank demonstrates excellent performance
in both portrait quality and name relevance.

Movie Portrait Quality Name Relevance
AS Good As It Gets 4.56 5.00
Clerks 4.20 4.92
Halloween 4.00 4.89
The Hustler 4.80 4.98
Chasing Amy 4.42 4.78
The Help 4.30 5.00
No Reservations 4.86 4.93
An Education 4.70 4.85
Harry Potter and the
Chamber of Secrets

4.73 5.00

Seven Pounds 4.71 4.87

2.1. Metric

Following prior work, three common metrics, namely Word
Error Rate (WER), Speaker Similarity (SIM-o), and Mel
Cepstral Distortion (MCD), are used to evaluate our dataset.
For WER, Whisper-large-v3 [10] is used to transcribe the
audio to text, after which word error is calculated at the
text level. For SIM-o, a WavLM-large-based speaker ver-
ification model [5] is used to extract speaker embeddings,
enabling cosine similarity calculation between synthesized
and ground truth speech. For MCD, an open-source Py-
Torch implementation 1 is used to evaluate the similarity be-
tween synthesized and real audio. For evaluation, each au-
dio file is converted to a single-channel, 16-bit PCM WAV
with a sample rate of 22050 Hz.

2.2. Baseline and Analysis

The four audio customization methods—YourTTS [2],
xTTS [3], VALL-E-X [17], and F5-TTS [4] were used in
MovieBench for evaluation. We performed direct zero-
shot testing without any additional training, with F5-TTS
achieving the best performance, as shown in Table 1. No-
tably, each evaluation was conducted individually for each
character. However, the real challenge lies in scenes with
multi-character interactions, as seen in movies. Generating
audio that matches the tone and voice of each character in a
way that ensures consistency with the visuals presents a sig-
nificant challenge, especially in maintaining distinct voices
across different audio tracks.

1https://github.com/chenqi008/pymcd



Figure 2. Manual Correction for Shot-Level Movie Annotations.

3. Quality Evaluation and Correction for Shot-
Level Annotation

Correction for Description-based Annotations. The main
text mentions that we required two annotators to manually

correct the shot-level dataset in the test set. The specific
correction rules are as follows:
• Check and Refine Descriptions: reviewing the descrip-

tions of characters, style, plot, background, and camera
motion, correcting any inaccuracies.
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Paulie Bleeker is outside, wearing a yellow headband and red 
hoodie. He is smiling and looking up at the sky, holding a 
small object in his hand with delight.Pl
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Juno MacGuff, wearing a red sleeve, picks up a pregnancy 
test kit from a store shelf, examining it. 

Vanessa and Mark Loring stand in a room discussing paint 
colors. Vanessa explains the choice of yellow for being 
gender-neutral, while Mark appears disinterested and glum.

Leah and Juno sit together, with Leah animatedly talking 
and sucking in her cheeks while Juno listens thoughtfully. 

Liberty Bell is seen at the dining table, carefully 
sprinkling toppings onto her food.

Figure 3. Visualization Comparison for Movie-Level Keyframe Generation.

• Characters:
①Hermione Granger: Wears a red hat and scarf, smiling and talking with Ron. 
②Ron Weasley: Wears a plaid coat and hat, looking surprised and engaged.
③Harry Potter: Appears from behind, laughing and joining Hermione and Ron.

• Visual Descriptions/Plot: Hermione and Ron are in a snowy forest, chatting and smiling. Harry suddenly 
appears from behind, laughing and joining the conversation, creating a playful and friendly atmosphere.

Figure 4. Temporal Plot Description. Shot-level plot descrip-
tions often contain strong temporal information that may not be
easily represented by a single key frame.

• Character Set Adjustments: Characters not belonging
to the Character Bank were removed from the video clip’s
character set, and any missing characters were added.

• Style Matching: Ensure that the style element accurately
reflected the video clip’s content, avoiding subjective in-
terpretations.

• Plot Alignment: The Plot was verified to align with the
main content of video, with any hallucinated or irrelevant
information removed.

• Grammatical Accuracy: Descriptions were refined to
ensure grammatical correctness.

• Objectivity: The descriptions were made more objective,
avoiding subjective terms or speculative phrases such as
”I think” or ”it might be.”

Two annotators were instructed to progressively refine the
character set, style, and plot based on the above rules. The
refinement interface is shown in Figure 2. The interface pro-

• Characters:
①Harry Potter: Harry walks downstairs, appearing contemplative and focused.

• Visual Descriptions/Plot: Harry Potter is seen descending a staircase in a dimly lit, stone-walled area. 
The atmosphere is quiet and introspective, suggesting a moment of contemplation or reflection for Harry.

Figure 5. Hallucination of Generated Plot. Descriptions gener-
ated by GPT-4-o may still exhibit instances of hallucination.

vides character photos, names, key frames from the original
video, and shot-level annotation details (such as plot, ap-
pearing character set, etc.). Annotators use this information
to assess the accuracy of the annotations and identify areas
for improvement. The refinement process took two annota-
tors approximately one week.

Quality Evaluation for Shot-level Appearing Charac-
ter Set. The main text presents that the character photos
in our Character Bank were manually selected by two an-
notators. After completing the data annotation, we con-
ducted a quality assessment focusing on Portrait Quality
and Name-Portrait Relevance. Table 2 shows the relevant
experimental results. It can be observed that Portrait-Name
Relevance scores significantly higher than Portrait Quality.
This is mainly because manually selected images are gener-
ally consistent with their names, leaving little room for error
in relevance. However, image quality is harder to guarantee,
as not all image candidates are of consistently high quality.



Table 3. Metrics for Evaluation of Model/Dataset. ‘Portrait Quality’, ‘Portrait-Name Relevance’, ‘Completeness’, and ‘Hallucination’
are used to assess the quality of MovieBench annotations. Other metrics are primarily used to evaluate model performance.

Metric Better Description
Portrait Quality higher Quality assessment for character portraits, involving human raters scoring the image quality on

a scale of 1 to 5, with 5 being the highest score.
Portrait-Name Relevance higher Portrait-Name relevance score for each character name and portrait pair, with human raters on

a scale of 1 to 5, and 5 being the highest score.
Completeness higher Descriptive completeness score, assessing the extent to which the annotation of textual descrip-

tions (e.g., Plot, Background Description) reflects the completeness of the video content.
Hallucination lower Fantasy score, assessing the degree of hallucination in textual descriptions of video content

(e.g., Plot, Background Description).
CLIP Score higher The evaluation of semantic alignment between the plot and generated outputs

Aesthetic Score(AS) higher The evaluation for aesthetic quality of an image by extracting visual features using the CLIP
and comparing them with a pre-trained aesthetic model to quantify the score.

Frechet Image Distance(FID) lower The evaluation for the quality of generated images by comparing the feature distribution of
features between real and generated images.

Inception Score (IS) higher The evaluation for the quality and diversity of generated images by Inception network.

False Postive(FP) lower The total number of false positives. Formula: FP =
∑n

i=1

∣∣∣Cpred
i \ Cgt

i

∣∣∣.
False Negative(FN) lower The total number of false negative. Formula: FN =

∑n
i=1

∣∣∣Cgt
i \ Cpred

i

∣∣∣.
True Postive(TP) higher The total number of true positives. Formula: TP =

∑n
i=1

∣∣∣Cgt
i ∩ Cpred

i

∣∣∣.
RecallID higher Ratio of correct detections&recognitions to total number of GTs. Formula: TP

TP+FN

PrecisionID higher Ratio of correct detections&recognitions to total number of predicted detections&recognitions.
Formula: TP

TP+FP

F1 ScoreID higher F1 ScoreID [11]. The ratio of correctly identified detections&recognitions over the
average number of ground-truth and computed detections&recognitions. Formula:
RecallID×PrecisionID×2
RecallID+PrecisionID

Subject Consistency higher DINO [1] is used to assess whether the appearance remains consistent throughout the entire
video.

Background Consistency higher CLIP feature similarity [9] is used to evaluate the temporal consistency of the background
scenes.

Motion Smoothness higher Video frame interpolation model [7] is used to evaluate the smoothness of generated motions.
Dynamic Degree higher Optical flow estimation [12] is used to evaluate the degree of dynamics in synthesized videos.

4. Possible Directions? Single-Stage or Two-
Stage

Movie/long video generation is typically not done in one go;
instead, it is divided into multiple shot clips for individual
generation. Currently, there are two main approaches for
this task: one-stage and two-stage methods.

One Stage. Currently, there are no fully realized one-
stage solutions for this task. Most open-source one-stage
models [16, 19] focus on text-to-video generation, lacking
the ability to maintain character consistency and connect
storylines across different video clips. DreamVideo [14]
and Magic-Me [8], two commonly used customizable video
generation models, are utilized in our paper. The typi-
cal workflow involves first creating a script with character-
specific details for each shot, generating corresponding
video clips for each shot individually, and then stitching
these clips together to produce a cohesive long-form video.

Two Stages. Directly generating long-form videos

is highly challenging. Therefore, the two-stage strategy
has become a more practical solution: 1) Firstly, Key
frames/Storyboard generation models [13, 15, 18, 20] can
be used to generate the key frame for every shot-level video.
Figure 3 provides additional visualizations of both success-
ful and challenging cases for AutoStory [13] and StoryD-
iffusion [20]. It can be observed that AutoStory [13] ex-
cels in maintaining consistency across multiple characters
but struggles with certain background compatibility. On
the other hand, StoryDiffusion [20] performs well in gen-
erating natural interactions between characters and back-
grounds but has difficulty maintaining consistency across
multiple characters. 2) With key frames, image-conditioned
video generation models (e.g., SVD), are employed to ex-
pand the key frames into full video clips. Finally, the vari-
ous video clips are stitched together to form a coherent se-
quence. While this method addresses some issues of video
continuity and narrative progression, it still faces difficul-
ties with maintaining a smooth flow across clips and ensur-



ing consistent character representation throughout the film.
However, for certain shots with strong temporal dependen-
cies, it is challenging to rely solely on keyframes for rep-
resentation. Figure 4 shows an example where generating
only a single keyframe is clearly insufficient to capture the
sequence of Harry’s appearance.

5. Metric Formulation
As shown in Table 3, we summarize and formulate the eval-
uation metrics relevant to the tasks discussed in this paper.
‘Portrait Quality’ and ‘Portrait-Name Relevance’ assess the
accuracy of the Character Bank annotations, specifically
evaluating the precision of manual image selection and la-
beling. ‘Completeness’ and ‘Hallucination’ measure the ac-
curacy of description-based annotations (e.g., plot and back-
ground descriptions), focusing on the completeness of de-
tails and hallucinations from VLM descriptions. The CLIP
Score, Aesthetic Score, Frechet Image Distance, and Incep-
tion Score evaluate the quality of generated images/videos
and their alignment with text descriptions. Additionally,
this paper introduces new metrics—PrecisionID, RecallID,
and F1ID—to assess character consistency. ‘Subject Con-
sistency’, ‘Background Consistency’, ‘Motion Smooth-
ness’, and ‘Dynamic Degree’ are recently proposed metrics
from VBen [6], aimed at evaluating various aspects of gen-
erated video.

6. Limitation
Hallucination of Plot from GPT4-o. Although GPT-4-
o demonstrates high accuracy and rarely makes errors, its
generated plot descriptions can still present issues, such as
hallucination. Figure 5 provides a clear example: in this
video, Harry walks downstairs, yet there is no evidence to
conclude that Harry is engaged in contemplation or reflec-
tion. However, the summary of GPT-4-o confidently sug-
gests this, introducing a potential misinterpretation. Such
hallucinations can reduce data reliability, misleading model
training and potentially causing unstable convergence when
using this data.
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