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A. Ablation Study Qualitative Results

We present qualitative results in Fig. 6 for the ablation

study of the proposed physics-based losses on the NeILF++

dataset City scene in Tab. 3 of Sec. 4.3. To ensure a fair

comparison, all ablated versions share the same hyperpa-

rameters as our proposed method described in Sec. 4.1,

varying only the inclusion of the proposed loss terms.

The baseline (ID 1) of NeILF++ [51] without the Lam-

bertian loss, exhibits many “baked-in” specular highlights.

As shown in Fig. 6, the baseline’s predicted albedo con-

tains many specular artifacts being added to the diffuse lobe.

Specifically, there is fringing on the sphere, shadowing ar-

tifacts on the cube (particularly on its lower regions shad-

owed by the other two objects), and an overly bright floor

due to the entanglement of the diffuse and specular lobes.

These specular effects in the albedo cause incorrect patches

on the shadowed cube in the metallicness prediction and

overly dark patches in the bottom left of the incident light

estimation for the associated cube location.

Adding the Conservation of Energy loss (ID 2) mitigates

these artifacts by enforcing energy conservation for the dif-

fuse and specular lobes. As a result, the lighting estimation

is also improved since the estimated light does not need

to compensate for the previously non-energy-conserving

(overly reflective) predicted materials. The predicted light-

ing is more consistent and improves the originally overly

dim patches in the bottom left corner of the baseline (cor-

responding to the cube). Reducing specular artifacts in the

lighting also improves the material estimation, as shown by

the increased albedo, roughness, and metallicness PSNR in

Tab. 3. Qualitatively, we also see that the albedo of the hel-

met and cube are effectively recovered in all regions except

the shadowed area. Despite these improvements, there are

still fringing artifacts on the sphere as well as shadowing

effects on the ground and cube.

Adding the specular loss instead of the Conservation of

Energy loss (ID 3), shows similar improvements in albedo,

roughness, and metallicness over the baseline (ID 1).

Finally, incorporating both the Conservation of Energy

and specular losses in our final method (ID 4) improves the

albedo, roughness, and metallicness even further. We once

again highlight that using both our novel physics-based

losses improves roughness by 0.35 PSNR, metallicness by

0.27 PSNR, and albedo by 3.28 PSNR over the baseline (ID

1). Qualitatively, the albedo estimation, which is most im-

portant, is significantly improved in our final method (ID

4), especially with the green albedo of the helmet and the

gray albedo of the cube. The roughness and metallicness

of the shadowed area of the cube are also recovered with

fewer artifacts. However, there are still limitations with

our proposed method, which highlights directions for future

improvement. In particular, we fail to fully reproduce the

specular effects in the helmet’s reflective visor and metallic

pieces in the predicted RGB. This limitation is likely due to

our overestimation of roughness and the missing fine details

in our metallicness prediction. Furthermore, we still exhibit

limited “baked-in” specular effects in our predicted albedo

with fringing on the sphere and incorrectly predict shadowy

patches on the cube and floor.

Overall, we convincingly improve the state-of-the-art

material estimation over our baseline NeILF++ [51]. While

challenges remain in handling high-frequency specular ef-

fects and reflective surfaces, our method convincingly ad-

vances the state of the art in joint material and lighting esti-

mation.

B. Additional Qualitative Results

We present additional qualitative results for the Env lighting

subset of the NeILF++ dataset [51] in Fig. 7 for the corre-

sponding quantitative results in Tab. 1.

Using our physics-based losses, our method improves

both lighting and material estimation compared to the

NeILF++ baseline. These improvements are consistent with

the trends observed in the more challenging Mix subset

shown in Fig. 4 of the main paper. For the Env subset, we

significantly reduce artifacts in the upper halves of the es-

timated incident light fields and enhance albedo estimation

in most scenes.

Notably, in the Studio scene, while some specular patchy

effects persist on the helmet, cube, sphere, and floor, our

method better captures finer details in the helmet’s metallic-

ness and roughness, which are absent in the NeILF++ base-

line. Across the Env subset, our roughness and metallicness

predictions show considerable improvements, including the

removal of shadowy patches on the cube and fringe artifacts

on the sphere.

Although some limitations remain, such as missing fine-

grained details on the helmet, our physics-based losses de-

liver consistent gains in material and lighting estimation,

highlighting their effectiveness across diverse lighting con-

ditions.

C. Non-Energy Conserving BRDFs

We extend the discussion in Section 3.2 and provide addi-

tional intuition for when the Conservation of Energy prop-

erty for BRDFs fails to hold. The Disney BRDF cre-
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Figure 6. Ablation of our physics-based losses. Qualitative performance of ablated versions of PBR-NeRF and of its full version is

compared on the City illumination with predicted illumination and Disney BRDF parameter estimation on novel views. †: no ground-truth

environment maps are provided with the dataset.

ates excess energy for unnormalized terms or when the

Schlick Fresnel approximation is invalid, causing overly

bright specular highlights [10]. Further, energy can be lost

as the underlying microfacet BRDF models rough materials

with single reflection instead of multiple scattering on the

microsurface.

D. Additional Background Details

For completeness, we provide further implementation

details on the NeILF++ implicit differential renderer

(Sec. D.1), joint material-illumination-geometry optimiza-

tion (Sec. D.2), and hyperparameter sweeps (Sec. D.3).

D.1. Implicit Differential Renderer (IDR)

The second term of the specular BRDF fs in Equation (4) is

the Fresnel term F (ωo,ωh) ∈ R
3. It models glossy reflec-

tion at glancing angles due to Fresnel reflection. Following

[11], we use the Schlick Fresnel Approximation

F (ωo,ωh; b,m) = F0 + (1− F0)(1− ωo · ωh)
5 (10)

where

F0 = 0.04(1−m) + bm (11)

The third term in Equation (4) is the geometry term

G(ωi,ωo,n; r) ∈ R. It models the masking and shadow-

ing of microfacets depending on the incident and viewing

direction.

G(ωi,ωo,n; r) = G1(ωi · n)G1(ωo · n) (12)

where

GGGX(z; r) =
2

(2− r2)z + r2
(13)

as implemented in NeILF++ [51].

D.2. Joint Optimization

We provide a more detailed description of the joint material-

illumination-geometry optimization discussed in Sec. 3.3.

We summarize all 3 PBR-NeRF training phases and their

losses in Tab. 4. The final weightings used for each loss

function term are listed in Tab. 5.



Table 4. Summary of PBR-NeRF geometry, material, and joint training phases with their respective losses. ↓: loss is downscaled from

the previous stage. ■: the point cloud loss is optionally used to improve geometry SDF initialization. †: loss used when no ground-truth

geometry is provided (e.g. DTU dataset). ∗: our novel PBR losses, namely (1) the Conservation of Energy Loss Lcons and (2) the NDF-

weighted Specular Loss Lspec.

Geometry-based Losses Material-based Losses

Optimization Phase LNeRF Lpcd † LEik † LHess † Lsurf † Lpbr Lref Lsmth L∗

cons L∗

spec

Geometry ✓ ■ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

Material ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓

Joint ✓ ✗ ✓ ↓ ↓ ✓ ✓ ✓ ✓ ✓

Table 5. PBR-NeRF loss function term weighting for the NeILF++ and DTU datasets. †: the point cloud loss Lpcd is only used in the

geometry phase for NeRF-SDF initialization. ∗: our novel PBR losses, namely (1) the Conservation of Energy Loss Lcons and (2) the

NDF-weighted Specular Loss Lspec.

Geometry-based Losses Material-based Losses

λNeRF λpcd † λEik λHess λsurf λpbr λref λsmth λ∗

cons λ∗

spec

NeILF++ [51] 1.0 N/A N/A N/A N/A 1.0 0.1 0.0005 0.01 0.5

DTU [15] 1.0 0.1 0.1 0.001 0.01 1.0 0.1 0.0005 0.01 0.01

Geometry phase. During the geometry phase, the NeRF

SDF network is learned using the following loss.

Lgeo = λNeRFLNeRF + λpcdLpcd + λEikLEik

+ λHessLHess + λsurfLsurf (14)

The NeRF rendering loss LNeRF is identical to the orig-

inal NeRF formulation. The estimated RGB color Lo,NeRF

is rendered using the NeRF network and compared to the

ground truth color c using LNeRF with a mean squared error.

LNeRF = ||Lo,NeRF − c||2
2

(15)

When ground truth geometry is provided, as in the

NeILF++ dataset [51], the estimated RGB color Lo,NeRF is

simply evaluated at the ground truth surface point using the

viewing direction instead of using volume rendering. Since

we have the ground truth geometry, the other geometry pri-

ors are not needed and their corresponding losses are as-

signed a zero weight. Therefore, only the NeRF rendering

loss LNeRF is used, with the only nonzero loss weight being

λNeRF.

When ground truth geometry is not provided, we use ad-

ditional geometry priors encoded as loss function terms.

Following [50, 51], we optimize the SDF with a point

cloud loss only during the geometry phase. The point cloud

loss supervises the predicted SDF distances and normals:

Lpcd = |G(xpcd)|+

(

1− npcd ·
∇xG(xpcd)

∥∇xG(xpcd)∥

)

. (16)

where xpcd is a point in the point cloud, G(xpcd) represents

the SDF’s predicted signed distance at xpcd, and npcd is the

point cloud normal at xpcd. This point cloud loss is only

used to help initialize the SDF to a satisfactory quality and

we perform full material-illumination-geometry optimiza-

tion without point cloud input during the later joint phase.

This use of point clouds is similar to the use of point clouds

in 3D Gaussian Splatting for initializing 3D Gaussians.

Note that the point cloud loss Lpcd is strictly optional, as

indicated in Tab. 4. Following NeILF++ [51], we use the

point cloud loss Lpcd on the DTU dataset to improve initial

SDF quality and for a fair performance comparison.

We additionally use the Eikonal loss to penalize the SDF

when the gradient at the surface point G(x) does not have a

magnitude of 1.

LEik =
∣

∣||∇xG(x)|| − 1
∣

∣ (17)

Furthermore, the Hessian loss penalizes rapidly chang-

ing gradient directions by minimizing the Hessian matrix

norm.

LHess = ||HG(x)||1 (18)

Finally, the minimal surface loss encourages compact

interpolation and extrapolation of unobserved surfaces by

minimizing the surface elastic energy.

Lsurf = δϵ(G(x))) (19)

where δe is the regularized Dirac delta function

parametrized by a sharpness ϵ,

δϵ(z) =
ϵπ−1

ϵ2 + z2
(20)

Material Phase. During the material phase, we train

the NeILF and BRDF MLPs with the frozen NeRF SDF



weights using the material phase loss:

Lmat = λpbrLpbr + λsmthLsmth + λrefLref

+ λconsLcons + λspecLspec (21)

The physically based rendering loss Lpbr supervises the

estimated outgoing radiance from (6):

Lpbr = ||Lo,NeILF++ − c||2
2

(22)

Following [44, 51], we use a bilateral smoothness loss

Lsmth to encode the assumption that roughness r and metal-

licness m at surface point xp are smooth if the color of cor-

responding pixel p has no sharp gradients:

Lsmth = (||∇xr(xp)||+ ||∇xm(xp)||) exp(−||∇pIp||)
(23)

where ∇pIp is the image gradient at pixel p.

We also use the NeILF++ inter-reflection loss to use the

NeRF SDF predicted outgoing radiance to supervise the in-

cident light predicted by the NeILF MLP along the same

ray ωi = −ωo between two surface points x1 and x2.

Lref = ||Li,NeILF(x2,ωi)− Lo,NeRF(x1,−ωi)||1 (24)

Joint Phase. During the joint optimization phase, the

NeRF SDF, BRDF, and NeILF MLPs have been pre-trained

by the previous geometry and material phases, allowing us

to jointly optimize all networks simultaneously. We reuse

the geometry phase loss Lgeo and material phase loss Lmat

from (14) and (21), respectively, to obtain the overall joint

phase loss

Ljoint = Lgeo + Lmat (25)

Note that the NeRF SDF is used twice per training sample

during the Joint phase: (1) estimating Lo,NeRF for Lgeo and

Lref; (2) sphere tracing to compute x and n for Lo,PBR.

D.3. Hyperparameter Sweeps

We now specify how we picked various hyperparameters

introduced with our novel Conservation of Energy Loss (7)

and NDF-weighted Specular Loss (8).

The Conservation of Energy Loss Lcons does not intro-

duce any new hyperparameters. We increase the number

of incident light directions from the default |SL| = 128 in

NeILF++ to |SL| = 256 to better enforce energy conserva-

tion and separate the diffuse and specular lobes using more

samples.

For the NDF-weighted Specular Loss, we use a tempera-

ture Tspec = 1. We include the softmax temperature Tspec in

our NDF-weighted Specular Loss definition (7) for full gen-

erality and to provide an option to control softmax sharp-

ness.

To determine the loss term weightings for our novel

physics-based losses, we perform a grid search with

λcons ∈ {1.5, 1.0, 0.5, 0.1, 0.05, 0.01, 0.005} and λspec ∈
{1.5, 1.0, 0.5, 0.1, 0.05, 0.01, 0.005}.

We also remove the Lambertian loss LLam used in

NeILF++ by choosing λLam = 0 to remove the strong limi-

tations on material estimation that the Lambertian assump-

tion causes.

The remaining hyperparameters are identical to

NeILF++ [51].
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Figure 7. Additional qualitative comparisons on the NeILF++ dataset [51]. †: no ground-truth environment maps are provided with the

dataset.


