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To accelerate the safe application of detectors in real sce-
narios, the models should be promoted to learn robust dis-
criminative features. This paper explores a new challeng-
ing problem, i.e., Open-Domain Unknown Object Detec-
tion (ODU-OD), and proposes World Model-based method
(i.e., World Feature Simulation (WFS)) for representation
learning. Particularly, WFS aims to emulate human beings
to leverage perception and memory to imagine unknown
characteristics. In Supplementary Material, we will provide
more experimental details, experimental analysis, and de-
tection results.

1. More Experimental Details

Datasets. For unsupervised OOD-OD, we adopt PASCAL
VOC [2] and Berkeley DeepDrive (BDD-100k) [10] as the
ID data for training. Meanwhile, MS-COCO [6] and Open-
Images [5] are taken as the OOD datasets to evaluate the
trained model. And the OOD datasets are manually exam-
ined to guarantee they do not contain ID categories. Mean-
while, for ODU-OD, the training data is kept unchanged.
And we only employ the work Clipstyler [8] to render the
testing data of unsupervised OOD-OD into three different
styles, i.e., ‘Acrylic’, ‘Purple-Brush’, and ‘Sketch’. Be-
sides, for OSOD, we follow the work [4] and utilize 20
VOC classes and 60 non-VOC classes in COCO to evaluate
our method under different open-set conditions. Finally, for
Single-DGOD, we follow the settings of the work [9]. And
the object detector is trained on the daytime-sunny weather
and is tested on the night-sunny, daytime-rainy, night-rainy,
and daytime-foggy weather.

Metrics. For ODU-OD and OOD-OD, we report: (1)
the false positive rate (FPR95) of OOD objects when the
true positive rate of ID objects is at 95%; (2) the area under
the receiver operating characteristic curve (AUROC). For
OSOD, we use Wilderness Impact (WI) [1] to measure the
degree of unknown objects misclassified to known classes.
And we also utilize Absolute Open-Set Error (AOSE) [7]
to count the number of misclassified unknown objects. For
Single-DGOD [9], mean average precision (mAP) is uti-
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Figure 1. In this paper, World Feature Simulation takes the cap-
tured memory and imagination as the input and iteratively synthe-
sizes unknown virtual features.

lized as the metric.

Implementation Details of OSOD and Single-DGOD.
To further demonstrate that our method could simultane-
ously enhance robustness and discrimination, we verify our
method on OSOD and Single-DGOD. Here, our method is
directly plugged into three baseline methods and does not
calculate the uncertainty loss. The training details are the
same as the baselines.

Specifically, in order to sufficiently exploit the synthe-
sized virtual OOD features, we train a binarized classifier,
i.e., the output of the known category is 1, and the output
of the virtual OOD features is 0. Meanwhile, we still em-
ploy a memory recorder to enhance current representation.
By these operations and minimizing the cross-entropy loss,
the discrimination ability of the object classifier could be
strengthened effectively.

2. Further Discussion of Unknown Features

Beyond mere perception, humans possess the uncanny abil-
ity to predict the outcomes of their actions, envision poten-
tial futures, and abilities that underpin interaction with the
world. To this end, world models have emerged as a criti-
cal solution that aims to bridge the cognitive divide between
human and machine intelligence [3].

As shown in Fig. 1, we consider unknown objects as
the future and design a World Feature Simulation for iter-
atively synthesizing virtual features. Particularly, in Fig. 6
of the submitted paper, we show three visualization exam-
ples within unseen domains. We can observe that compared
with the calculated memory-enhanced features, the synthe-
sized unknown features mainly pay attention to the back-
ground regions. We consider this is reasonable. Compared
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Figure 2. More ODU-OD detection examples based on our method. We can observe that our method accurately distinguishes OOD objects
within unseen domains, which shows the effectiveness of our method.
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Figure 3. More OOD-OD detection examples based on our method. We can observe that our method accurately distinguishes OOD objects
within the nature domains, which shows the effectiveness of our method.
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Figure 4. Detection results based on PASCAL VOC. We can see that our method accurately localizes and recognizes ob]ects in these
images, e.g., the cow, dog, bird, and person, which shows that our method is effective for in-distribution data.



with the foreground regions, the background regions con-
tain plentiful visual information. Obviously, leveraging the
background visual information is instrumental in synthesiz-
ing virtual unknown features, improving the ability of de-
tecting unknown objects within unseen domains.

Algorithm 1 World Feature Simulation for ODU-OD

Input: ID data {X, Y}, randomly initialized detector with
parameter (o, randomly initialized modulator with parame-
ter v and /3, randomly initialized unknown-feature genera-
tor, weight « for the loss Leontrast, weight A for the uncer-
tainty loss Lunty-
Output: Object detector with parameter ¢*, and OOD de-
tector C.
while train do
Sample images from the ID dataset { X, Y'}.
Perform the multi-level perception using Eq. (1) to ob-
tain F,.
Build the memory recorder using Eq. (2) to obtain M.
Reason the imagination bank using Eq. (3) to obtain Z.
Calculate the variational encoding operation using Eq.
(5) to obtain Z and G.
fort=1, .., Ndo
2t = U(sz * 2y + W, * Gt + W, Stfl + bz)a
gt =0(Wag % Zy + Wy * Gy + Wy % Sp_1 + by),
Sy = Tanh(Wy % Zy + Wi % (g:©S; 1+ (1 —g:) ©
Gt)), .
St = (1 — Zt) © St_1 + 2t © St,
end
Calculate the overall training objective £ using Eq. (4),
(7), (8), and (9).
Update the model parameters based on Eq. (9).

end

while eval do

Calculate the OOD uncertainty score using the left part
of Eq. (10).

Perform thresholding comparison using the right part of
Eq. (10).

end

Besides, since there is no OOD information available,
our method could effectively select certain characteristics
to synthesize expected OOD features, and it is not a sim-
ple spatial division. In Fig. 5, taking the first image in the
second row as an example, as it is hard to leverage foot re-
gions to recognize ID objects, the imaged unknown content
mainly focuses on these regions.

3. More Ablation Analysis

In Eq. (9), we utilize two hyperparameters, i.e., o and A,
to adjust the contrastive loss and uncertainty loss. Since the
uncertainty loss Lyny is directly related to the current task,

the value of X\ should be set larger than «. Here, we make
an ablation analysis of the two hyper-parameters.

Analysis of . The hyper-parameter « is used to bal-
ance the contrastive losses consisting of L;y,, Lynk, and
Lgis- In the experiments, we observe that when « is set to
0.01, 0.001, and 0.0001, the corresponding performance of
FPRO5 is 81.03%, 80.16%, and 80.83%.

Analysis of \. In this paper, the hyper-parameter A in
Eq. (9) is to constrain the uncertainty 1oss Lyney. In the
experiments, we observe that when A is set to 0.5, 0.1, and
0.01, the corresponding performance of FPR9S is 81.64%,
80.16%, and 80.77%.

4. More Detection Results

Algorithm | shows the training and evaluation details of our
method. By performing multi-level perception and building
the memory recorder, the unknown-feature generator could
recurrently generate virtual features. With the help of spe-
cific constraints, the virtual features are promoted to con-
tain expected characteristics. Finally, in Fig. 2, 3, and 4, we
show more detection examples. We can see that our method
could accurately localize and recognize OOD objects within
unseen and seen domains, demonstrating the superiorities of
our WFS method.
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