
SAMBLE: Shape-Specific Point Cloud Sampling for an Optimal
Trade-Off Between Local Detail and Global Uniformity

Supplementary Material

A. Carve-based SAM and Insert-based SAM

Based on different information basis, we propose two dif-
ferent sparse attention maps (SAM), carve-based SAM and
insert-based SAM. In the main paper, we used global in-
formation as the basis and introduced carve-based SAM.
Using local information as the basis, insert-based SAM is
introduced as follows.

Insert-based Sparse Attention Map. Carve-based sparse
attention map starts from the global information, and then
merges the local information. It can also be done in a re-
verse way: starting with the local information first, then
considering it in a global situation. To be more specific,
local-based attention maps are first computed with the equa-
tion presented in the main paper, subsequently, the values
in the local attention map of each point are inserted in the
corresponding cells of each row in an empty (initialized as
all 0s) global N ×N attention map based on the k-nearest
neighbor indexes. We term it Insert-based Sparse Attention
Map. Again, for each row, k cells are inserted; and for each
column, the number of inserted cells is not fixed.

Relation between Carve and Insert-based SAM. More
vividly, consider the global attention map as a grid stone
slab of size N×N . For carve-based SAM, values of all cells
are pre-computed and hidden in the slab grid cells, and only
the selected cells are carved out; for insert-based SAM, only
values of certain cells are pre-computed in the mosaic tile
strings (the local-based attention maps), and they are then
inserted into the slab according to the corresponding KNN
indexes, like inserting mosaic tiles into an empty grid slate.
The final outputs from carve-based SAM and Insert-based
SAM are quite similar since they have the same places of
non-zero cells. For both methods, the number of selected
cells in each row is always k, while the number of selected
cells in each column is variable. Their main difference is
that the row-wise sum in insert-based SAM is always 1,
while in carve-based SAM is not.

Different Indexing Modes with Insert-Based SAM.
Based on carve-based SAM, all seven indexing modes pro-
posed are compatible. However, when insert-based SAM
is used, since the sparse row-wise sum is always 1, only
indexing modes iii, v, vi, vii are compatible.

To investigate how each indexing mode works, we train
a separate model for each indexing mode with all other set-
tings consistent. In the paper, we have visualized the sam-
pling score distributions as heatmaps for carve-based SAM
to improve the method’s interpretability. As supplemen-

(iii) sparse row standard deviation (v) sparse column sum (vi) sparse column average (vii) sparse column square-divided

Figure 1. Heatmaps under different indexing modes with insert-
based sparse attention map.

SAM Indexing
Mode

Cls.
OA (%)

Seg.

Cat. mIoU (%) Ins. mIoU (%)

Carve

i 93.92 83.98 86.16
ii 93.78 83.85 85.99
iii 93.63 83.62 85.74
iv 93.66 83.51 85.60
v 93.40 83.47 85.49
vi 94.11 84.12 86.38
vii 94.08 84.22 86.46

Insert

iii 93.67 83.71 85.86
v 93.44 83.42 85.51
vi 93.46 83.64 85.78
vii 93.83 84.09 86.15

Table 1. Classification and segmentation performance of different
indexing modes with different SAMs. Top-M sampling is adopted
as the sampling strategy.

tary materials, we also present such heatmap results with
insert-based SAM as in Fig. 1. Note that only four indexing
modes are applicable for insert-based SAM. The visualized
results are quite similar to those of carve-based SAM except
for indexing mode vi, with which insert-based SAM shows
smaller differences between point sampling scores. On the
other hand, indexing mode vii still achieves a better trade-
off between sampling edge points and preserving global
uniformity. However, the performance of insert-based SAM
on downstream tasks is mostly not on par with carve-based
SAM as presented in Tab. 1, hence we use carve-based
SAM as default for most experiments in our paper.

B. Determining Number of Sampled Points for
Each Bin

For each shape, by considering the number of points con-
tained within bins β = (β1, β2, . . . , βnb

) alongside the de-
termined bin sampling weights ω = (ω1, ω2, . . . , ωnb

), the
specific numbers of points to be sampled from each bin
κ = (κ1, κ2, . . . , κnb

) are computed with the following al-
gorithm.

Algorithm 1 Determining κ from β and ω

Require: number of total points to be selected: M ,
Sampling weights ω : [ω1, ω2, . . . , ωnb

], number
of points in bins β : [β1, β2, ..., βnb

]
1: κ← 0
2: x← ω · β + ϵ
3: Mr ←M
4: while Mr > 0 do
5: s← Mr∑

xj

6: for j = 1 to nb do
7: κj ← round(κj + sxj)
8: if κj ≥ βj then
9: κj ← βj

10: xj ← 0
11: end if
12: end for
13: Mr ←M −

∑
κj

14: end while
15: return κ

In the above algorithm, s in line 5 is the scaling factor
used to ensure a desired number of total sampled points. It
is also evident that our sampling method is scalable to any
desired sampling ratio. In line 2, ϵ is a minimal value (here
we use 1×10−8) to prevent the denominator part from being
zero in a later step. Moreover, to prevent κj from surpass-
ing the available number βj in any bin, any excesse points
are proportionately redistributed to other bins that have not
been fully selected. The redistribution process is further il-
lustrated in Fig. 2 for better comprehensibility.

Figure 2. Illustration of redistributing excess points to other bins
that have not been fully selected.

C. Relationship between Bin Sampling
Weights and Bin Sampling Ratios

For the sake of brevity and improved visual clarity, in the
paper, the axis labels of the histograms have been omit-
ted. We further provide the full version of the histogram, in
which the number of points and the sampling ratio in each
bin are given. A demo is provided in Fig. 3. More detailed
histogram results are provided in Sec. K.

Figure 3. Left: bin partitioning, each color represents the points
belonging to this bin. Right: the learned sampling strategy.

One thing worth noting is that the indicated sampling ra-
tios r in the histogram are not simply re-scaled sampling
weights ω. As in the algorithm we presented before, apart
from the re-scaling operation, a redistribution operation is
also applied to prevent κj surpassing the available point
number βj in one bin. Given the point number in each bin
β = (β1, β2, . . . , βnb

) and the number of points to be sam-
pled from each bin κ = (κ1, κ2, . . . , κnb

), the sampling
ratios presented in the histogram is r = κ/β and r ∈ [0, 1].

Bin Index 0 1 2 3 4 5

Possibilities of All
Points Being Sampled 53.69% 27.11% 8.02% 2.11% 0.85% 4.98%

Table 2. Possibilities of all points being sampled in bins, across all
shapes from the test dataset.

The redistribution operation only happens when κj is
about to surpass βj , this means all points in jth bin have
been selected and rj = 1. We additionally count and docu-
ment the likelihood of this occurrence for all bins across all
shapes from the test dataset. The numbers are reported in
Tab. 2, from which we can find that for around 54% of the
shapes, all points in the first bin are selected and sampled.
Note that the first bin corresponds to the points of higher
sampling scores which are mostly edge points with index-
ing mode vii. This observation underscores the significance
of edge points. On the other hand, there are still around 46%
shapes that do not sample all edge points. It suggests that
an excessive emphasis on edge points might have adverse
effects on subsequent downstream tasks for these shapes,
which also aligns with the conclusion drawn by APES.

APES

To
p
-M

To
p
-M

To
p
-M

To
p
-M

To
p
-M

To
p
-M

To
p
-M

To
p
-M

To
p
-M

To
p
-M

SAMBLE

Figure 4. Qualitative results of our proposed SAMBLE, in comparison with APES. In addition to the sampled results, sampling score
heatmaps and sampling strategies are also provided. All shapes are from the test set.

D. Network Architecture
For a fair comparison, the same basic network architectures
from APES are used in our experiments, as illustrated in
Fig. 5. The downsampling layers are replaced with our pro-
posed ones, and the upsampling layers are replaced with the
classical interpolation-based ones.

U
ps

am
pl

e

Em
be

dd
in

g

N
2P

 A
tt

en
tio

n

Do
w

ns
am

pl
e

M
LP

N
2P

 A
tt

en
tio

n

Do
w

ns
am

pl
e

N
2P

 A
tt

en
tio

n

N
2P

 A
tt

en
tio

n

U
ps

am
pl

e
N

2P
 A

tt
en

tio
n

ST
N

 (o
pt
io
na
l)

Em
be

dd
in

g

N
2P

 A
tt

en
tio

n

Do
w

ns
am

pl
e

M
LP

N
2P

 A
tt

en
tio

n

Do
w

ns
am

pl
e

N
2P

 A
tt

en
tio

n

M
ax

po
ol

M
LP

Residual links (optional)

Chair

Classification
Framework

Segmentation
Framework

Figure 5. Network architectures for the classification task and the
segmentation task.

E. More Training Details
Classification Tasks. AdamW is used as the optimizer. The
learning rate starts from 1 × 10−4 and decays to 1 × 10−8

with a cosine annealing schedule. The weight decay hyper-
parameter for network weights is set as 1. Dropout with
a probability of 0.5 is used in the last two fully connected
layers. We use nb = 6 bins for point partitioning. The
momentum update factor γ = 0.99 for updating boundary
values. The temperature parameter τ = 0.1. The network
is trained with a batch size of 8 for 200 epochs.

Segmentation Tasks. AdamW is used as the optimizer.
The learning rate starts from 1 × 10−4 and decays to
1 × 10−8 with a cosine annealing schedule. The weight
decay hyperparameter for network weights is 1× 10−4. We
use nb = 4 bins for point partitioning. The momentum
update factor γ = 0.99 for updating boundary values. The
temperature parameter τ = 0.1. The network is trained with
a batch size of 16 for 200 epochs.

F. Sampling Results in Comparison with APES

Additional qualitative results in comparison with APES are
provided in Fig. 4 and Fig. 6. Both figures indicate that
APES focuses excessively on edge points, while SAMBLE
successfully achieves a much better trade-off between sam-
pling edge points and preserving global uniformity, leading
to better performance on downstream tasks.

SAMBLE

APES

SAMBLE

APES

SAMBLE

APES

Figure 6. Segmentation results of our proposed SAMBLE, in comparison with APES. All shapes are from the test set.

G. Design Justifications of the Bin Token Idea
- Devil Is in the Details.

Adding Bin Tokens to Q or K/V? A critical point in the
idea of bin tokens lies in determining the specific branches
to which the tokens should be concatenated. In order to
match the tensor dimension for later computation in the at-
tention mechanism, the tensor size of Key and Value should
be the same. Hence if tokens are being added to the Key
branch, they also have to be added to the Value branch.
Overall, there are two possibilities of adding bin tokens to
(i) the Query branch, or (ii) the Key and the Value branches.

It is crucial to emphasize that, due to the nature of the
sampling operation where indexes are selected, gradients
cannot be propagated back through the sampling operation
during the backward propagation process. As a result, re-
gardless of the selected structure, it is essential to estab-
lish an alternative pathway to convey the information con-
tained within the bin tokens, which have a size of nb × N ,

to the downsampled features, which have a size of M × d.
This pathway should ensure the flow of relevant informa-
tion despite the inability to directly backpropagate gradients
through the sampling operation.

As illustrated in the left of Fig. 7, in the former case,
an attention map of tensor size (N + nb) × N is obtained.
After M indexes of the points to be sampled are learned
with SAMBLE, M rows in the attention map are extracted
to form a new tensor for the next steps. However, note that
the sub-tensor of nb×N will never be delivered to the next
steps since they do not correspond to points, hence no gradi-
ent will be backpropagated to the tokens during the training.

On the other hand, as illustrated in the right of Fig. 7,
adding bin tokens to the Key and Value branches does not
have this problem and successfully enables gradient back-
propagation. One thing worth mentioning is that in this sce-
nario, the row-wise sum is not exactly equal to 1 but still
very close to 1 due to the significantly smaller magnitude of
nb relative to N . Therefore, this is unlikely to significantly

(N+nb) x d N x d N x d

⊗

Index

⊗

M x d

K VQ

N x d

©

M x N

Point FeaturesBin Tokens

N

nb

N

N
N

M

SAMBLE

N+nb

nbx d

N x d (N+nb) x d (N+nb) x d

⊗

Index

⊗

M x d

nbx d

K VQ

N x d

©

M x (N+nb)

Point Features Bin Tokens

N

nbN

N N

M

SAMBLE

N+nb

Adding Bin Tokens to Key and ValueAdding Bin Tokens to Query

Figure 7. Adding bin tokens to Query leads to no gradient being
backpropagated to the tokens, while adding bin tokens to Key and
Value enables the gradient backpropagation.

impact the calculation of point-wise sampling scores. Con-
cerning the design of adding bin tokens to all branches of
Query, Key, and Value, it is equivalent to case ii since the
sub-tensor of nb rows in the attention map will never be
sampled and propagated.
Order of Mean-pooling and ReLU Operations. Within
our design, the ReLU operation is used to prevent the
learned sampling weight from being negative. It can be
performed either after Mean-pooling (as done in the main
paper), or before Mean-pooling:

ωj =
1

βj

∑
pi∈Bj

ReLU(mpi,Bj
) . (1)

However, the inherent distribution of values within tensors
often results in a non-negligible proportion being negative,
especially those corresponding to points of lower impor-
tance. Directly setting too many values to zero would re-
sult in a significant loss of features, which is regrettable
considering the potential information discarded. Therefore,
instead of performing the ReLU operation before the mean-
pooling operation, we do it the other way around, i.e., first
mean-pooling, then, after this information fusion, ReLU is
performed over the pooled results.

Fig. 8 gives the learned sampling strategies with the
mean-pooling and ReLU operations applied in different or-
ders. Although both orders yield shape-specific sampling
strategies, the sampling ratios over bins learned with the or-
der of ReLU first are mostly around 40% - 60%, leading to a
worse sampling performance. On the other hand, the order
of mean-pool first yields better sampling strategies as less
potential information is discarded.

We additionally count and document the likelihood of
ReLU being effective, which indicates the former pooled

result is negative, for all bins across all test shapes. From the
numbers reported in Tab. 3, we can see that the likelihood
of the pooled results being negative is extremely small (less
than 1%) for the first half of bins, while it goes higher for
the latter bins yet the number is still relatively acceptable.

Bin Index 0 1 2 3 4 5

Possibilities of
ReLU Being effective 0.45% 0.28% 0.57% 4.25% 11.63% 13.53%

Table 3. Possibilities of ReLU being effective in bins, across all
test shapes.

Pre-softmax or Post-softmax Attention Map for Split-
ting The Point-to-Token Sub-Attention Map. When ad-
dressing the bin tokens, our initial approach involved split-
ting the point-to-token sub-attention map from the post-
softmax attention map Mpost, which seemed intuitively ap-
propriate. Furthermore, all elements within Mpost are inher-
ently positive, eliminating any concern for negative sam-
pling weights and obviating the need for an additional
ReLU operation. However, experimental findings revealed
that this method proved ineffective, as it resulted in overly
uniform sampling weights across different bins.

The underlying cause of this issue was identified after we
explored the underlying mathematical principles and exam-
ined the values in the tensors during runtime. Tensors in a
well-trained network tend to exhibit diminutive feature val-
ues as they propagate through layers. Denote mij as one
element in the pre-softmax attention map Mpre, given its
minute magnitude, we apply the Taylor expansion formula
to yield:

emij = 1 +mij +
m2

ij

2
+ · · · ≈ 1 +mij . (2)

Therefore, the corresponding element m′
ij in the post-

softmax attention map is

m′
ij =

emij∑N+nb

j=1 emij

≈ 1 +mij

N + nb +
∑N+nb

j=1 mij

. (3)

In our case, the values of the elements mij in Mpre are
approximately within the magnitude of 10−3 to 10−5. After
a softmax operation, the resultant values m′

ij in Mpost ex-
hibit minimal variation, leading to closely similar sampling
weights across bins in a later step.

Efforts were undertaken to address this issue before we
turned to using Mpre for sampling weights acquisition. We
attempted to use the logarithmic operation to restore the lost
information:

ln(m′
ij) = ln(

emij∑N+nb

j=1 emij

) = mij − ln(
N+nb∑
j=1

emij) (4)

... -> Relu -> Mean-pool -> -> Mean-pool -> Relu -> ...

Figure 8. Learned sampling strategies with the mean-pooling and ReLU operations applied in different orders.

After the logarithmic operation, every value in the sub-
attention map is negative. Therefore, a normalization op-
eration is necessary. However, as shown in Fig. 9, the com-
mon normalization methods, such as z-score and centering,
will result in too many negative elements (more than half),
leading to too much information loss when passing through
subsequent ReLU modules. Even if we successfully iden-
tify or meticulously design a superior normalization method
that enables manual control over the proportion of negative
elements to an applicable value, such manual intervention
strays from the original intention of this thesis, which is to
discover a learning-based mapping from sampling score to
sampling probability.

Through the analysis, we observed that the term mij in
Eq. (4) is exactly the elements in the pre-softmax attention
map and is what we are interested in. Therefore, to avoid
the potential loss of information that could arise from the
softmax operation, we opted to directly use the results from
Mpre for bin sampling weights acquisition.

H. Additional Ablation Studies

Momentum Update Factor. The momentum update strat-
egy is widely used within contrastive learning frameworks
in self-supervised learning. In our case, we aim to derive
the bin boundary values ν from the entirety of shapes within
the training dataset. These values aim to evenly partition the

O

p

𝑁𝑜𝑟𝑚 𝑙𝑛 𝑚𝑖𝑗
′

Figure 9. Illustrative figure of the distribution of the element val-
ues in the post-softmax attention map, after normalization.

distribution of point sampling scores across all shapes and
points in the training data. Hence such an adaptive learning
method is used.

An ablation study over the momentum update parame-
ter γ is performed and the numerical results are reported in
Tab. 4. From it, we can see that γ = 0.99 yields the best
performance. This actually aligns with most current con-
trastive learning frameworks, where a majority use a value
of γ = 0.99.

We additionally provide the bin partitioning results over
the test dataset with the learned boundary values ν in
Fig. 10. It demonstrates that the boundary values adaptively

γ 0.9 0.99 0.999 0.9999

Cls. OA (%) 93.80 94.18 94.02 93.95

Table 4. Classification performance with different values of the
momentum update factor γ.

Figure 10. Partitioning the distribution of point sampling scores of
all shapes and points in the test dataset into bins with the learned
boundary values.

learned from the training dataset can also effectively parti-
tion the distribution of point sampling scores evenly across
all shapes and points in the test dataset.
Temperature Parameter. The sampling strategy is de-
termined with the point number in each bin β =
(β1, β2, . . . , βnb

) and the number of points to be sampled
from each bin κ = (κ1, κ2, . . . , κnb

). Within each bin, in-
stead of applying the top-M sampling method simply, we
suggest employing random sampling with priors. The idea
is quite straightforward: process the point-wise sampling
scores into point-wise sampling probabilities, and M non-
repeated points are sampled randomly based on their sam-
pling probabilities:

ρpi
=

eapi
/τ∑N

i=1 e
api

/τ
, (5)

where the temperature parameter τ controls the distribution
of the sampling probabilities.

An ablation study over τ has been conducted. For a
better illustration, the pre-softmax point sampling score
heatmap and the post-softmax point sampling probability
heatmap are visualized in Fig. 11. However, since the soft-
max operation is performed within each bin, it would be
impossible to visualize the post-softmax sampling proba-
bilities of different bins in the same figure if multi-bins are
used. Hence in Fig. 11 only a single bin is used. From
it, we can observe that the sampling probabilities of points
go from having a large deviation to being uniformly dis-
tributed, just as we designed. Numerical results are reported
in Tab. 5, where τ = 0.1 achieves the best performance.

T = 0.01 T = 0.02 T = 0.05 T = 0.1 T = 1 T = 10

Sa
m

pl
in

g
Sc

or
e

(p
re

-s
of

tm
ax

)
Sa

m
pl

in
g

Pr
ob

ab
ili

ty
(p

os
t-s

of
tm

ax
)

Sa
m

pl
ed

 P
oi

nt
s

Figure 11. Different sampling results using different τ in the soft-
max with temperature during the sampling process. The indexing
mode is the sparse column square-divided.

τ 0.01 0.02 0.05 0.1 0.2 0.5 1 10

Cls. OA (%) 93.84 93.96 94.06 94.18 93.89 93.84 93.74 93.70

Seg. Cat. mIoU (%) 84.10 84.23 84.38 84.51 84.26 84.13 84.02 83.88
Ins. mIoU (%) 86.44 86.48 86.60 86.67 86.51 86.42 86.29 86.23

Table 5. Classification and segmentation performance of the
model with different τ values.

I. Sampling Policy Comparison

Three different sampling policies are illustrated in Fig. 12,
including Top-M sampling, prior-based sampling, and bin-
based sampling. The Top-M sampling policy is the simplest
one and it samples the points with larger sampling scores
directly. The prior-based sampling policy first converts the
sampling scores into sampling probabilities and then sam-
ples randomly based on those probabilities. This method
introduces the possibility of allowing the sampling of points
with smaller sampling scores. The bin-based sampling pol-
icy further builds upon that. It first partitions the points
into bins, and then learns bin sampling weights to deter-
mine the number of points to be sampled within each bin, In
this way, it guarantees the sampling of some smaller-score
points if the model thinks they are helpful for downstream
tasks. In each bin, either top-M sampling or prior-based
sampling can employed. In our case, we use the prior-based
sampling. The bin-based sampling policy allows for more
fine-grained control over the sampling process, tailoring it
to the specific characteristics of each shape.

J. Model Complexity and Runtime Efficiency

To evaluate SAMBLE’s efficiency, we assess its model
complexity in comparison with APES and report the re-
sults in Tab. 6. Results from the traditional FPS and SAM-
BLE’s variations are also reported. For a more direct and
detailed comparison, we report both the number of param-
eters and FLOPS of a single downsampling layer. In order

Sampling Score:

Sampling Probability:

4.8 2.5 1.6 1.6 0.8 0.8 0.5 0.2 0.2 0.2

Sampling Policy:
Top-M Sampling

0.4 0.2 0.1 0.1 0.05 0.05 0.04 0.02 0.02 0.02

Sampling Policy:
Prior-Based Sampling

Bin 1 Bin 2

Sampling Probability
within Each Bin: 0.45 0.25 0.1 0.1 0.05 0.05 0.34 0.22 0.22 0.22

Sampling Policy:
Bin-Based Sampling

Sampling Weights
(to determine point number in each bin): sample 3 points in Bin 1

0.64 0.36

sample 2 points in Bin 2

Figure 12. An illustration of different sampling policies. Note for
bin-based sampling, either top-M sampling or prior-based sam-
pling may be used within each bin.

to assess inference efficiency, experiments were carried out
using a trained ModelNet40 classification model on a sin-
gle NVIDIA GeForce RTX 3090. The tests were conducted
with a batch size of 8, evaluating a total number of 2468
shapes from the test set.

As shown in Tab. 6, SAMBLE has a slightly larger num-
ber of model parameters compared to APES, primarily due
to the incorporation of additional bin tokens. Notably, when
nb = 1, the number of parameters and FLOPs of SAMBLE
are identical to that of global-based APES. This is quite rea-
sonable as in this case, using additional bin tokens is unnec-
essary and the multi-bin-based sampling policy degrades
into the simple prior-based sampling policy (see Fig. 12).
On the other hand, SAMBLE’s inference throughput is re-
duced due to the introduction of bin partitioning operations.
Notably, the process of determining the number of points
to be sampled within each bin involves a CPU-intensive
loop computation (the redistribution process in Algorithm
1), which can lead to increased inference time.

Overall, using a sparse attention map instead of a full
attention map improves performance on downstream tasks,
though it slightly decreases inference throughput. Similarly,
replacing top-M sampling with prior-based sampling for the
sampling policy shows comparable results—enhancing per-
formance at the cost of a minor reduction in efficiency. In

Method
Attention

Map
Sampling

Policy Params. FLOPs
Throughput
(ins./sec.)

OA
(%)

FPS + kNN - - 20.90k 2.71G 102 92.80

APES (local) Local Top-M 49.15k 1.09G 488 93.47

APES (global) Global Top-M 49.15k 0.05G 520 93.81
Bin-based 49.92k 0.38G 128 94.02

SAMBLE (nb = 1) SAM
Top-M 49.15k 0.05G 506 93.92

Prior-based 49.15k 0.05G 473 93.95

SAMBLE (nb = 6) Bin-based 49.92k 0.38G 125 94.18

Table 6. For model complexity, we report the number of param-
eters and FLOPs of one downsampling layer for a more detailed
comparison. We also report the inference throughput (instances
per second) and the classification performance.

contrast, when bin-based sampling is employed, there is
a significant boost in model performance, but this comes
with a notable decrease in efficiency. Despite this, SAM-
BLE consistently outperforms FPS in both performance and
speed. Note that the FPS results presented here already use
a GPU-accelerated version, whereas its standard implemen-
tation achieves a much lower throughput (around 12).

Considering the trade-off between model performance
and runtime efficiency, the sampling method choice should
be based on specific needs. For a balance between decent
performance and high inference throughput, it is advisable
to use SAM for point-wise score computation paired with a
straightforward sampling policy such as Top-M or a prior-
based approach (i.e., SAMBLE with nb=1). This setup de-
livers good results without significantly impacting speed.
On the other hand, if the focus is on achieving an optimal
performance on downstream tasks, SAMBLE with the bin-
based sampling policy is the ideal choice. However, this
method may result in reduced inference throughput due to
the complexity of the sampling strategy.

K. More Visualization Results
Learned Shape-Specific Sampling Strategies. We present
additional extensive results in Fig. 13, Fig. 14, Fig. 15, and
Fig. 16 with various categories. From them, we can observe
that shape edge points are mostly partitioned into the first
two bins. Furthermore, in addition to learning shape-wise
sampling strategies for individual shapes, it is observed that
analogous shapes within the same category exhibit simi-
lar histogram distributions and sampling strategies. Con-
versely, point clouds from different shape categories are
sampled by distinct sampling strategies.
Few-Point Sampling. We further provide more visualiza-
tion results of few-point sampling in Fig. 17 and Fig. 18.
No pre-processing with FPS into 2M points was performed.
From them, we can observe that when sampling very few
points from the input directly, APES can only sample points
from the sharpest regions in a concentrated manner, while
our SAMBLE keeps better global uniformity.

Figure 13. More visualization results of bin partitioning and learned shape-specific sampling strategies on the chair category. Zoom in for
optimal visual clarity.

Figure 14. More visualization results of bin partitioning and learned shape-specific sampling strategies on the airplane and car categories.
Zoom in for optimal visual clarity.

Figure 15. More visualization results of bin partitioning and learned shape-specific sampling strategies on the guitar, lamp, plant, and
flower pot categories. Zoom in for optimal visual clarity.

Figure 16. More visualization results of bin partitioning and learned shape-specific sampling strategies on the cone, bottle, toilet, and bed
categories. Zoom in for optimal visual clarity.

M = 64 M = 32 M = 16 M = 8M = 128

APES

SAMBLE

APES

SAMBLE

Heatmap

APES

SAMBLE

APES

SAMBLE

Figure 17. Sampled results of few-point sampling on the chair shapes. No pre-processing with FPS into 2M points was performed. Zoom
in for optimal visual clarity.

M = 64 M = 32 M = 16 M = 8M = 128

APES

SAMBLE

APES

SAMBLE

Heatmap

APES

SAMBLE

APES

SAMBLE

Figure 18. Sampled results of few-point sampling on the airplane and lamp shapes. No pre-processing with FPS into 2M points was
performed. Zoom in for optimal visual clarity.

	Carve-based SAM and Insert-based SAM
	Determining Number of Sampled Points for Each Bin
	Relationship between Bin Sampling Weights and Bin Sampling Ratios
	Network Architecture
	More Training Details
	Sampling Results in Comparison with APES
	Design Justifications of the Bin Token Idea - Devil Is in the Details.
	Additional Ablation Studies
	Sampling Policy Comparison
	Model Complexity and Runtime Efficiency
	More Visualization Results

