
Appendix

For a thorough understanding of our Sonata, we have com-
piled a detailed Appendix. The table of contents below of-
fers an overview and guide to specific sections of interest.
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A. Discussion

We discuss limitations and future works as follows:
• Enhancing semantic meaning. We believe there is sig-

nificant potential to enhance the semantic richness of
Sonata’s representations. Currently, our training does
not yet leverage the vast resource of 1M object-level
assets [53], which could provide valuable augmenta-
tion for our scene-level point cloud dataset. Integrat-
ing these object-level point clouds could deepen the
model’s semantic understanding by introducing finer
object-specific details, creating a more robust founda-
tion for scene-level and cross-instance semantics.

• Unifying training scenarios. Unifying training across
indoor and outdoor scenarios is a promising direction
for future work. Currently, Sonata separates pre-training
for each setting to focus on a reliable SSL framework
without introducing the additional challenge of a do-
main gap. However, unification is feasible. The main
challenges lie in point density and input features: point
density can be aligned by scaling, while enhancing out-
door LiDAR data with color from lifted images and
pseudo normal vectors based on LiDAR viewing direc-
tion helps bridge feature gaps. Additionally, applying
randomized noise and masking on these features could
further enhance generalization.

• Scaling with video data. Natural 3D point cloud datasets
have inherent scale limitations compared to video data.
To address this, we aim to leverage video datasets in two
ways: 1. using metric [8] or stereo [84] depth estima-
tion to lift videos of static scenes into pixel-aligned point
clouds, and 2. generating sparse point clouds from dy-
namic egocentric videos using SLAM algorithms [27].
This approach opens new possibilities for training on
large-scale, real-world diverse scenes.
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Figure 8. View generation. Top: we generate global crops using
random crops with a crop ratio ranging from 40% to 100% of the
minimal number of the raw point cloud size and 216, combined
with random photometric and spatial augmentations. Photometric
augmentation is shared among all global views, while spatial aug-
mentation is applied independently to each global view to balance
the challenges posed by spatial and photometric features. The first
global view is designated as the principal view, and the center of
the subsequent global view is restricted to fall within the principal
view. Bottom: Local views are generated with a similar pipeline
as global views but with a crop ratio restricted to 5% to 40%. All
augmentations are applied independently to each local view. Ad-
ditionally, masked views are obtained by applying random patch
masks to the global views.

• Cross-modal distillation. Our evidence shows that
self-supervised models from different modalities, like
Sonata for point clouds and DINOv2 [60] for images,
capture complementary representations, and combining
them leads to stronger representation. This suggests
promising potential for cross-modal self-distillation to
enhance both 3D and image representations. A straight-
forward approach would be to lift DINOv2 features
into 3D and integrate them within Sonata’s pre-training
paradigm. Additionally, developing a unified SSL
framework with simultaneous self- and cross-modal dis-
tillation across point clouds and images could further
enrich multi-modal representation learning.

We hope our insights with Sonata inspire innovations in
reliable point self-supervised learning and pave the way for
future research in 3D representations and its applications.



Algorithm 1 point self-distillation pseudocode.

’’’

To simplify, we present the pseudocode using a single

local(masked)-global pair.

’’’

# gs, gt: student and teacher networks

# cs, ct: student and teacher online clustering head

# tps, tpt, student and teacher temperatures

# m: network momentum rates

# k: upcast level

# initialize student and teacher network and head

gt.params, ct.params = gs.params, cs.params

gt.requires_grad = False

ct.requires_grad = False

for p in loader: # load a batch of point cloud

# ps: local(mask) view, pt: global view

ps, pt = view_generator(p)

if ps is MaskedView:

# apply gaussian noise to masked points

ps.coord[p1.mask] += gaussian(s)

# encode network feature

fs, ft = gs(ps), gt(pt)

# up-cast network feature

fs, ft = upcast(fs, k), upcast(ft, k)

# compute similarity with online cluster (SwAV)

ss, st = cs(s1), ct(s2)

# center with sinkhorn-knopp

st = centering(st)

# match neighbor point pairs with the original

# coordinate before augmentation, return index

is, it = match(ps.origin_coord, pt.origin_coord)

loss = H(ss[is], st[it])

loss.backward()

# update student and teacher network and head

update(gs.params)

update(cs.params)

gt.params = m*gt.params + (1-m)*gs.params

ct.params = m*ct.params + (1-m)*cs.params

def H(t, s):

s = softmax(s / tps, dim=-1)

# center with sinkhorn-knopp and sharpen

t = softmax(center(t) / tpt, dim=-1)

return - (t * log(s)).sum(dim=1).mean()

B. Additional Implementation

B.1. View Generation

In Fig. 8, we illustrate the view generation pipeline of
Sonata. Specifically, global views are generated with a ran-
dom crop ratio between 40% and 100%, while local views
use a ratio between 5% and 40%. The crop ratio is applied
to the smaller of the raw point cloud size or 216 points. The
first global view is designated as the principal view, and
subsequent global and local view centers are restricted to
lie within this principal view. Random photometric and spa-
tial augmentations [88] are applied to all views. For global
views, photometric augmentations are shared after being
randomized, whereas spatial augmentations are applied in-
dependently to each view. Masked views are generated by
applying random patch masks to the global views.

B.2. Point Self-distillation

In Algo.1, we provide a simplified pseudocode for point
self-distillation using a single local (masked)-global pair of
random views. In the actual implementation, we use a to-
tal of 4 local views, 2 masked views, and 2 global views.
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Figure 9. Point self-distillation loss items. The pair-wise point
self-distillation between masked views and global views, and be-
tween local views and the principal global view. We evenly weight
the loss terms for the 8 point self-distillation pairs.

Sem. Seg. Params AEO [73]

Methods Learn. Pct. mIoU mAcc allAcc

→ PTv3 124.8M 100% 34.91 47.92 63.79
• Sonata (lin.) <0.2M <0.2% 32.03 47.45 53.25
• Sonata (full) 124.8M 100% 55.90 63.49 84.50

Table 9. Out-of-distribution perception capability. We evaluate
this capability on the AEO dataset [73] with 22 sparse SLAM point
clouds, supervised by semantic labels from object bounding boxes.

For the local views, point self-distillation is conducted be-
tween each local view and the principal global view. For the
masked views, pair-wise point self-distillation is performed
with each global view. The loss terms for all point self-
distillation pairs are evenly weighted ( visualized in Fig. 9).

C. Additional Zero-shot Visualization

In Fig. 10, we provide additional zero-shot visualizations,
including PCA and dense matching, using the Habitat-
Matterport 3D Dataset (HM3D) [68]. Specifically, we en-
code a house-scale point cloud comprising 2 floors and 12
rooms, visualizing the learned representations with PCA-
mapped colors to highlight the semantic structure of the
space. Furthermore, we select five representative points
from various objects, including a sofa arm, chair, table, pil-
low, and side table, and visualize dense matching by com-
puting the similarity of each selected point with the rest of
the house-scale point cloud. This process highlights the se-
mantic coherence and clustering of features across objects
and spaces. The visualization demonstrates that Sonata con-
sistently provides semantically rich and informative rep-
resentations across diverse indoor environments. These
representations effectively capture distinct object patterns,
exhibit a high degree of semantic granularity, and enable
meaningful queries without any supervision, reinforcing the
robustness and utility of the Sonata features.
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Figure 10. Zero-shot visualization. We provide PCA-mapped colors and dense matching (with five representative points marked with
→) on a house-scale point cloud from HM3D [68], comprising 2 floors and 12 rooms (left: floor 1, right: floor 2). The visualization
demonstrates that Sonata consistently delivers semantically rich and informative representations across diverse indoor environments.

D. Additional Properties

D.1. Out-of-distribution (OOD) Perception.

In Tab. 9, we evaluate the out-of-distribution perception ca-
pability of Sonata using the Aria Everyday Objects (AEO)
dataset [73] for semantic segmentation. This dataset con-
sists of 25 sparse SLAM-generated point clouds, each an-
notated with 17 object categories. Among these, three sam-
ples (IDs: 0, 5, 24) are reserved for validation, while the
remaining 22 are used for training. This experimental setup
presents significant challenges, including unseen data pat-
terns (as shown by the sparse pattern of SLAM-generated

point clouds in Fig. 11, left column), limited training data,
and imprecise annotations derived from bounding box la-
bels. We assess Sonata by performing both probing and
fine-tuning on this semantic segmentation task, supervised
by the transferred semantic labels.

The results show that the linear probing of Sonata
achieves a mIoU of 32.0%, which still has a gap of 2.9%
compared to the 34.9% mIoU achieved by training from
scratch. This indicates a current limitation of Sonata: insuf-
ficient diversity in training data patterns. Currently, we only
include dense indoor point clouds, focusing on building
a reliable point SSL framework without introducing addi-
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Figure 11. Surface reconstruction. Scene surface is recon-
structed with SDF regression from frozen Sonata features, demon-
strating strong geometric priors and cross-domain generalization.

tional domain gap challenges. However, fine-tuning Sonata
demonstrates its robustness, achieving a remarkable 21.0%
improvement over training from scratch. This substantial
leap underscores the strength and adaptability of Sonata
representations, particularly in challenging OOD perception
tasks. These findings further reinforce Sonata’s potential as
a foundation for tackling tasks with limited or noisy training
data in diverse and complex environments.

D.2. Surface Reconstruction.

Previous experiments have already demonstrated the rich
semantic information encoded in Sonata representations. To
further investigate whether Sonata also captures dense ge-
ometric priors, we conducted a surface regression exper-
iment using frozen Sonata features. A Truncated Signed
Distance Function (TSDF) [21] volume is defined within a
4m→4m→4m local coordinate system with a resolution of
96 → 96 → 96 (↑4cm per voxel). The volume is patchified
into 8 → 8 → 8 patches, with each patch projected to a fea-
ture dimension of 512. This results in 512 → 12 → 12 → 12
volume tokens. We applied learned positional encodings to
the patches, and tri-linear interpolation ensured consistency
between the positional encodings and Sonata features. To
decode the volume tokens into a dense TSDF volume, we
simply use the standard TransformerDecoder [79] imple-
mented in PyTorch [63], with the Sonata features being the
“memory” and the voxel tokens being the decoding “tar-
get”. One can also see the Sonata features as the context
while the voxel tokens are the queries. After decoding, the
outputs were reshaped to reconstruct the dense TSDF vol-
ume. This approach is inspired by the Large Reconstruction
Models (LRM)s [37]. We employed the EVL training and
TSDF fusion [58, 73] pipeline, training the network on the
synthetic ASE dataset [3]. The cross-domain generalization
was tested on the SLAM-generated point cloud inputs of
the AEO dataset, as illustrated in the Fig. 11. The results

Methods Year Val Test

→ PointNet++ [66] 2017 53.5 55.7
→ 3DMV [22] 2018 - 48.4
→ PointCNN [50] 2018 - 45.8
→ SparseConvNet [30] 2018 69.3 72.5
→ PanopticFusion [57] 2019 - 52.9
→ PointConv [85] 2019 61.0 66.6
→ JointPointBased [16] 2019 69.2 63.4
→KPConv [77] 2019 69.2 68.6
→ PointASNL [96] 2020 63.5 66.6
→ SegGCN [49] 2020 - 58.9
→RandLA-Net [39] 2020 - 64.5
→ JSENet [40] 2020 - 69.9
→ FusionNet [103] 2020 - 68.8
→ FastPointTransformer [62] 2022 72.4 -
→ SratifiedTranformer [47] 2022 74.3 73.7
→ PointNeXt [67] 2022 71.5 71.2
→LargeKernel3D [15] 2023 73.5 73.9
→ PointMetaBase [52] 2023 72.8 71.4
→ PointConvFormer [86] 2023 74.5 74.9
→OctFormer [82] 2023 75.7 76.6
→ Swin3D [100] 2023 77.5 77.9
• Supervised [100] 2023 76.7 77.9
→KPConvX [78] 2024 76.3 -
→OneFormer3D [46] 2024 76.6 -
→ODIN [42] 2024 77.8 74.4
→ SparseUNet [17] 2019 72.2 73.6
• PC [93] 2020 74.1 -
•CSC [38] 2021 73.8 -
•MSC [88] 2023 75.5 -
• PPT (sup.) [90] 2023 76.4 76.6
→ PTv1 [108] 2021 70.6 -
→ PTv2 [87] 2022 75.4 74.2
→ PTv3 [89] 2023 77.5 77.9
•MSC [88] 2023 78.2 -
• PPT (sup.) [90] 2023 78.6 79.4

• Sonata (linear probing) 2024 72.5 -
• Sonata (decoder probing) 2024 79.1 -
• Sonata (full fine-tuning) 2024 79.4 -

Table 10. ScanNet V2 semantic segmentation.

qualitatively demonstrate that dense scene geometry can be
reconstructed solely from frozen Sonata features, showcas-
ing learned geometric priors within Sonata representations.

E. Additional Comparision

In this section, we expand the combined results table for
indoor semantic segmentation from the main paper, pro-
viding a more detailed comparison of results on two key
benchmarks: ScanNet [23] (see Tab. 10) and S3DIS [1]
(see Tab. 11). Specifically, the ScanNet v2 dataset con-
tains 1,513 room scans reconstructed from RGB-D frames,
with 1,201 scenes allocated for training and 312 for vali-
dation. The input point clouds are derived from the ver-
tices of reconstructed meshes, where each point is labeled
with one of 20 semantic categories (e.g., wall, floor, ta-
ble). The S3DIS dataset includes 271 rooms distributed
across six areas from three buildings, specifically designed



Methods Year Area5 6-fold

→ PointNet [65] 2017 41.1 47.6
→ SegCloud [76] 2017 48.9 -
→TanConv [75] 2018 52.6 -
→ PointCNN [50] 2018 57.3 65.4
→ ParamConv [83] 2018 58.3 -
→ PointWeb [107] 2019 60.3 66.7
→HPEIN [44] 2019 61.9 -
→KPConv [77] 2019 67.1 70.6
→GACNet [81] 2019 62.9 -
→ PAT [97] 2019 60.1 -
→ SPGraph [48] 2018 58.0 62.1
→ SegGCN [49] 2020 63.6 -
→ PAConv [95] 2021 66.6 -
→ StratifiedTransformer [47] 2022 72.0 -
→ PointNeXt [67] 2022 70.5 74.9
→ SuperpointTransformer [69] 2023 68.9 76.0
→ PointMetaBase [52] 2023 72.0 77.0
→ Swin3D [100] 2023 72.5 76.9
• Supervised [100] 2023 74.5 79.8
→MinkUNet [17] 2019 65.4 65.4
• PC [93] 2020 70.3 -
•CSC [38] 2021 72.2 -
•MSC [88] 2023 70.1 -
• PPT (sup.) [90] 2023 74.7 78.1
→ PTv1 [108] 2021 70.4 65.4
→ PTv2 [87] 2022 71.6 73.5
→ PTv3 [89]) 2023 73.4 77.7
• PPT [90] 2023 74.7 80.8
• Sonata (linear probing) 2024 72.3 76.5
• Sonata (decoder probing) 2024 74.5 81.5
• Sonata (full fine-tuning) 2024 76.0 82.3

Table 11. S3DIS semantic segmentation.

for semantic scene parsing. Following established prac-
tices [66, 76, 108], area 5 is reserved for testing, and 6-
fold cross-validation is performed across the remaining ar-
eas. Unlike ScanNet v2, S3DIS features densely sampled
points on mesh surfaces, with annotations across 13 cate-
gories. For both datasets, we adopt the mean class-wise in-
tersection over union (mIoU) as the primary metric to eval-
uate performance on indoor semantic segmentation tasks,
adhering to standard conventions [66]. These expanded ta-
bles provide a detailed breakdown of performance metrics
alongside the publication years of previous works, allowing
readers to trace the evolution of advancements in 3D repre-
sentation learning. Entries labeled as ↓ correspond to mod-
els trained from scratch, while • denotes results achieved
using pre-trained models.
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