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A. Ablation Study on MVS Feature Splatting

We leverage MVS feature splatting for geometry-enhanced
supervision (Sec. 3.2). As the adopted CLMVSNet [8] ex-
tracts feature maps at 3 different scales through an FPN,
we analyze the impact of each feature scale on reconstruc-
tion quality. As shown in Tab. 1, high-resolution feature
maps provide finer-grained geometric constraints, leading
to better performance (row a to row ¢). Moreover, we set
the feature vector of each Gaussian primitive as learnable
parameters. As shown in Tab. | (row d), the coupled learn-
ing of feature and geometry degraded the final performance,
validating the necessity of fixing feature values for geomet-
ric optimization.

Feature Res.  Fixed Accuracyl Completion] Average|

(a) H/4xW/4 v 0.853 1.645 1.248
(b) H/2xW/2 v 0.835 1.651 1.243
(¢ HxW v 0.816 1.632 1.224
@ HxW X 0.830 1.648 1.239

Table 1. Ablation study on feature splatting.

B. Comparison of Different Gaussian Primi-
tive Update Strategies

In addition to the generic density control strategy used in
3D Gaussian Splatting [5], GaussianPro [2] employs tradi-
tional MVS to optimize rendered depth maps and projects
geometrically consistent depths into a point cloud, which is
used to expand the Gaussian primitives. As shown in Tab.
2, we compared this strategy with our proposed Selective
Gaussian Update strategy (Sec. 3.4). The traditional MVS
optimization strategy of GaussianPro does not show signif-
icant advantages with the MV S-initialized point cloud. Our
Selective Gaussian Update strategy leverages rendered ge-
ometry to refine Gaussian primitives, achieving better re-
sults.

T indicates corresponding authors.

Methods Accuracy] Compleness| Averagel
Baseline 0.790 1.612 1.201
GaussianPro [2] 0.791 1.598 1.194
Selective Gaussian Update 0.760 1.544 1.152

Table 2. Quantitative results of different Gaussian primitive
update strategies.

C. Comparison of Surface Reconstruction and
Novel View Synthesis

We compare the surface reconstruction and novel view syn-
thesis results of different methods on the DTU dataset. We
follow the dataset split strategy of SparseNeuS [7], select-
ing views 23, 24, and 33 for training. The recent Gaussian-
based state-of-the-art NVS method, DNGaussian [6], em-
ploys monocular depth for regularization. Although it
achieves reliable novel view synthesis under sparse views,
the reconstructed surface exhibits noise and missing regions
(Fig 1). As shown in Table 3, our method achieves the best
LPIPS and SSIM scores for novel view synthesis. More-
over, it demonstrates superior surface reconstruction accu-
racy and completeness compared to all other methods.

Settings Accuracy] Completion] Average|
(a) CLMVSNet [8] 0.82 1.70 1.26
(b) CLMVSNet [8] + Ours 0.74 1.52 1.13
(¢) TransMVSNet [3] 0.61 1.60 1.11
(d) TransMVSNet [3] + Ours 0.63 143 1.03

Table 4. Improvement upon different MVS methods.
D. Experiment on Different MVS Methods

As shown in Tab. 4, we compare the reconstruction
performance of different MVS methods combined with
Sparse2DGS. TransMVSNet [3] (row ¢) is trained on the
DTU dataset using ground truth depth, achieving superior
reconstruction performance compared to the unsupervised
CLMVSNet [8] (row a). By initializing the Gaussians
with CLMVSNet and performing test-time fine-tuning, we
achieve performance comparable to that of TransMVSNet



(row b).
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Figure 1. Visualization of surface reconstruction and novel view synthesis results.

Methods PSNR 1 SSIM 1 LPIPS | ‘ Accuracyl, Completion] Average|
2DGS [4] 16.55 0.601 0.385 2.17 3.45 2.81
GOF [9] 16.67 0.575 0.388 3.09 2.55 2.82
PGSR [1] 15.30 0.536 0.409 1.64 2.52 2.08
DNGaussian [6] 19.09 0.664 0.390 4.22 7.15 5.68
Ours 17.49 0.726 0.275 0.74 1.52 1.13

Table 3. Quantitative comparison of surface reconstruction and novel view synthesis from sparse views.

Additionally, initializing with the point cloud

from TransM VSNet leads to improved performance, further
demonstrating the effectiveness of our method (row d).
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