Universal Scene Graph Generation

Supplementary Material

Overview

The appendix presents more details and additional results
not included in the main paper due to page limitation. The
list of items included are:

* Specification on Task Definition and Setups in §A;

* Full-version Related Work in §B;

 Limitations and Future Direction in §C;

¢ Extended Framework Details in §D;

* Detailed Experimental Settings in §E;

» Extended Experimental Results in §F.

A. Specification on Task Definition and Setups
A.1. SG Structure

Here, we provide a detailed description of the nodes and
edges in the USG. The USG is formally represented as
G4 = {O,R}, where O = {O0*}, x € {Z,V,D,S} rep-
resents the set of objects across all modalities. Each node
involves a category label c§ € C© and a segmentation mask
m;. For instance, as illustrated in Fig. 1, the objects node
set O in the USG comprises of textual objects node set
O¢ in the TSG and visual objects node set O in the ISG.
R = {R*,R**°}, x,0 € {Z,V,D,S} and * # o. R* in-
cludes both intra-modality relationships and inter-modality
associations R**°. We define the existence of inter-modality
associations between objects from different modalities if they
correspond to the same underlying object described in dis-
tinct modalities. For example, as shown in Fig. 1, the textual
object “Peter” in the TSG should correspond to the visual
object “person” in the ISG. Similarly, as depicted in Fig. 3,
the “sofa” in the 3DSG aligns with the “sofa” in the ISG.
When inter-modality associations exist, the corresponding
objects are merged into a unified node, as shown in Fig. 1,
with the example of the “headphones” This merged node
represents the object across multiple modalities, retaining a
single category label. Typically, the object name from the
textual modality is prioritized for its flexibility and precision
in description. Similarly, the relation predicate is preferen-
tially adopted from the TSG, as it often provides a more
descriptive and accurate representation. For instance, in
Fig. 1, the relationship between “Pefer” and “sofa” in the
USG is “relax on” derived from the TSG, rather than “lying”
which might be less descriptive. Despite merging nodes,
the segmentation masks from all modalities are preserved.
This ensures that each modality’s unique contribution to the
object’s representation is maintained within the USG.

In addition, to parse the USG for scenes derived from
video and other modalities, we first establish association re-
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Figure 1. Illustration of USG generated from text and image scenes.

lations between nodes from other modalities and the objects
in each frame of the VSG. For instance, as illustrated in
Fig. 4, the objects “Peter”, “sofa” and “iPhone” from the
TSG are associated with the objects in every frame of the
VSG. To ensure the USG comprehensively represents the
scene described by the video and other modalities, the scene
from the other modalities is added as the first frame in the
USG. The remaining frames correspond to the frame-level
scene graph representations from the VSG. This paradigm
advances in integrating multimodal information much more
seamlessly, enriching the holistic representation of the scene
within the USG framework.

A.2. Combination of All Possible Modalities

Here we provide illustrations of the USG obtained under
different modal combinations:

» Text-Image: in Fig.1.

e Text-3D: in Fig.2.

¢ Text-Video: in Fig.4.

e Image-3D: in Fig.3.

 Text-Image-3D: in Fig.5.

¢ Text-Image-Video-3D (Complete combination): in
Fig.6 we provide a full illustration of USG obtained
from the total 4 modalities, i.e., text, image, video, and
3D.
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Figure 2. Illustration of USG generated from text and 3D scenes.
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Figure 3. Illustration of USG generated from image and 3D scenes.

B. Full-version Related Work

B.1. SG Representation and Definition

Research on SG generation [22, 28, 52, 64] has long been a
significant focus within the relevant community, aiming to
deeply understand environmental scenes by not only recog-
nizing individual objects but also the semantic relationships
between them. Over decades of development, SGs have
garnered substantial research attention and efforts, where
various definitions of SG representations under different

modalities and settings are developed [18, 22, 23, 43, 52].
Initially, centered on the static vision, researchers pioneered
image SG [20, 22, 64], where nodes represent objects and
edges denote the relationships between them. Subsequently,
textual SGs [28, 43] are proposed to acknowledge that the
textual modality can also convey a complete scene. Later
studies extended SG representations to other data modalities,
including video [22] and 3D [52, 56], and even to more set-
tings such as panoptic SG [59, 60] and ego-view SG [42],
etc. SGs can accurately capture the semantics of a scene
while filtering out undesired visual information. Moreover,
different modalities possess distinct characteristics, allowing
SGs to model semantic scenes with subtly different traits.
Thus, SGs have been widely applied to various downstream
tasks [43, 50, 55, 66].

As previously emphasized, the definitions of SGs across
differing modalities result in varied features and strengths.
While almost all existing SG research is confined to model-
ing within a single modality, we recognize that real-world
scenarios necessitate a universal SG representation capable
of expressing information from various modalities through
a unified cross-modal perspective. This need is particularly
pressing with the development of multimodal generalist and
agent communities [4, 33, 57, 67], where an increasing num-
ber of applications require the ability to understand and pro-
cess multimodal information. Therefore, this paper explores
a novel USG representation for the first time.

B.2. SG Generation Methods

Historically, SG generation methods can be broadly catego-
rized into two main groups: two-stage methodsand one-stage
methods. The two-stage methods [24, 25, 30, 34, 48, 58, 64,
68] involve training separate object detection and relation
prediction models sequentially. Typically, these methods rely
on off-the-shelf object detectors, such as Faster R-CNN [40],
to detect N object queries. Subsequently, features such as
appearance, spatial information, labels, depth, and masks are
extracted for all possible combinations of detected objects.
These features are then fed into the relation prediction model
to infer relationships between each object pair. Despite
achieving high relation extraction performance, the inher-
ent limitations of the pipeline approaches, particularly the
separate training of components, lead to significant model
complexity.

To address this issue, recent research has shifted towards
one-stage methods [8, 31, 53, 54], where the object detector
and relation extractor are trained in an end-to-end manner.
Early studies proposed fully convolutional SG generation
models [32] and adopted pixel-based approaches [36]. Fol-
lowing the success of DETR [3], a Transformer-based one-
stage object detector, many one-stage SGG studies [13, 17]
have adopted similar approaches. These methods effectively
model SG generation by introducing object queries or triplet
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Figure 5. [lustration of USG generated from text, image and 3D scenes.

queries. For instance, RelTR [8] introduced paired subject
and object queries, while SGTR [26] proposed composi-
tional queries decoupled into subjects, objects, and predi-
cates. PairNet [54] designed separate relation and object
queries, and PSGTR [59] directly introduced triplet queries

to detect triplets without relying on an object detector.

Beyond architectural designs, several studies [1, 35, 51,
53] have focused on leveraging modality-specific character-
istics to enhance model performance. In the context of VSG
generation, modeling spatio-temporal features has garnered
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first illustration shown in the Introduction section of the main article. Best viewed via zooming in.

significant attention. For example, TRACE [51] employs a
hierarchical tree structure to aggregate spatial context, and
[2] utilizes message passing in a spatio-temporal graph to
enhance feature representation. For 3DSG generation, some
researches [11, 12] focus on leveraging the spatial layout
clues to enhance the 3DSG generation performance.

Additionally, to improve performance, many works are
no longer limited to using only visual appearance. Exter-
nal knowledge has been incorporated to further improve SG
generation performance [11, 12, 61, 62]. This includes sta-
tistical priors [62], such as co-occurrence frequencies, and
commonsense knowledge [0, 19, 65] extracted from sources
like Wikipedia or ConceptNet [47].

However, existing SG generation methods remain
modality-specific, with no approach capable of supporting
SG generation across different modalities. This limitation
highlights the emergency of developing a universal SG gen-
eration method.

C. Limitations and Future Direction

C.1. Potential Limitations

Despite its contributions, this work has several limitations:
Firstly, the proposed method faces challenges in associating
objects across different modalities in highly complex and
densely populated scenes. For instance, distinguishing be-
tween multiple similar individuals or matching objects with
their textual object names often requires external common-
sense knowledge, which is beyond the current scope of the
model. Secondly, in video scenes, the method struggles with
particular long-term understanding, particularly in object
tracking and relation recognition over extended temporal
sequences. While our current dataset does not include partic-

ularly long videos, such scenarios are common in real-world
applications. Addressing this limitation presents a valuable
direction for future research.

C.2. Future Work on USG

Going forward on the USG we introduced in this work, we
believe the following aspects should be worth exploring.
First, the USG has significant potential for enhancing the
capabilities of multimodal large language models (MLLMs).
As a modality-invariant universal representation, the USG
facilitates fine-grained alignment across different modalities,
including object-level and relation-level correspondences.
Inspired by the concept of knowledge masking [49], which
focuses on learning more structured knowledge by masking
phrases and named entities rather than individual sub-words,
USG can inject fine-grained, structured semantic knowledge
across modalities into MLLMs. This approach enables the
alignment of semantic information at a granular level, foster-
ing a deeper and more precise understanding of cross-modal
content. Specifically, pre-training tasks can be designed
by masking and predicting various types of nodes in the
USG, parsed from multimodal inputs. These nodes may
correspond to objects, relationships, or attributes, and their
structured representation allows the model to learn modality-
invariant features effectively. This strategy not only im-
proves the alignment across modalities but also strengthens
the model’s reasoning and generalization capabilities.
Beyond MLLMs, the USG can also serve as a foundation
for numerous downstream applications. In robotics, USG
could facilitate embodied Al tasks, such as planning [15]
and navigation [39, 55], by providing a universally struc-
tured understanding of dynamic, multimodal environments.



Moreover, in creative applications like content generation,
USG could bridge visual and textual modalities to produce
contextually coherent and semantically rich outputs, such as
image-to-text descriptions or cross-modal story generation.
Looking ahead, the universality of USG should lead to
unified multimodal benchmarks, where diverse tasks can be
evaluated under a consistent framework. This would drive
innovation in creating truly generalizable Al systems capa-
ble of reasoning across multiple domains and modalities.
Developing such systems could redefine the boundaries of
multimodal Al enabling applications that require deep con-
textual understanding, such as virtual reality simulations,
autonomous systems, and interactive Al agents.

D. Extended Framework Details

In this part, we try to give a more comprehensive picture
of our USG generation framework, as an extension to the
description in the main article.

Add & Norm
Add & Norm

Mask Decoder

e

%ﬁl

Multi-Scale |‘ Mask Masked Attention

Image Features < v T—q—
Image
Features |

Object Queries

elf-attentio

salanQ 109lg0
$108[qO abew|

Figure 7. The framework of the mask decoder: multi-scale image
features are integrated to refine image object queries, following a
similar approach for other modalities such as text, video, and 3D.

D.1. Mask Encoder

As depicted in Fig. 7, the randomly initialized object queries
are fed into the mask decoder, in which the multi-scale im-
age features are also injected by masked cross-attention to
help refine the object query representations. Specifically,
following [7], we perform masked cross-attention between
modality-specific features H* and the corresponding object
query features X € RNa x4 x € {Z,V, D, S} as follows:
X} = softmax(M;"; + Q{_ K/\)Vi* + X[y, (1)
where N is the number of queries and [ is the layer in-
dex. X denotes input object query features to the mask
decoder. Q;_, = F,(X] ), while K;* | = Fj,(H*) and
V,*, = F,(H*). Here, F,(-), Fy(-) and F,(-) are linear
transformations as typically applied in attention mechanisms.
M is the binarized output of the resized mask prediction

from the previous [ — 1-th Transformer decoder layer:
« 0 ifM (z,y)=1
M (z,y) = { La(z,y)

—00 otherwise
Moreover, in practice, for image, video, and 3D data, H* is
sampled from the multi-scale feature output { HZ/V/P}3_ |
while for text, we employ HS across different scales. In ad-
dition, for video data, to effectively capture the temporal in-
formation across frames, we incorporate a transformer-based
temporal encoder F.,,,, to model the temporal relationships
between objects. After L™%** layers, we obtain the refined
. . Ny
object queries Q* = {q}, .
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Figure 8. The framework of two-way relation-aware object/subject
interaction module.

D.2. Two-way Relation-aware Object/Subject Inter-
action

The detailed framework of the two-way relation-aware ob-
ject/subject interaction module is demonstrated in Fig. 8.
The two inputs are object embeddings and subject embed-
dings, and then the L7 layers transformer layers with
cross-attention and self-attention mechanisms perform to
iteratively refine subject and object features as follows:

X0 = BT X X,

X[ = B (X, X X,

where [ denotes the layer index, and X§%* = E*ub, ngj =
E°b . We define the Fca(X,Y) as:

Fea(X,Y) = softmax(F,(X)" - Fi(Y)) - F,(Y), (4)

where Fy(-), Fj(-) and F,(-) are linear transformations as
typically applied in attention mechanisms.

3)

D.3. Relation Decoder

As illustrated in Fig. 9, the relation encoder processes the
relation queries Q"' alongside contextualized information.
Specifically, the initial relation queries are constructed by
concatenating the embeddings of selected subject-object
pairs. Then, to leverage complementary contextual infor-
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Figure 9. Illustration of relation decoder.

mation from multiple modalities, we propose to fuse the
multimodal features to enhance the relation extraction per-
formance:

H=[H®;H*;HY;H"), Q)

where H represents the fused features, dependent on the
input modalities. For example, given text, image, and 3D
inputs, H = [HS; H; HP]. Then, the fused features
are integrated using a cross-attention mechanism to retain
critical relational information:

Xrel rel ()(l7el17 H H)

= softmax(F (X7)HT - Fy(H)) - F,(H),

where Xj¢l = Q¢! is the initialized relationship query
features into the relation decoder.

6)

D.4. Inference

During inference, our framework, developed as a USG parser,
supports both single-modality and multimodal input for USG
generation. For single-modality USG generation, we first
perform object detection, select the most confidential relation
proposals, and finally perform the relationship classification.
For multimodal USG generation, we introduce an object as-
sociator to establish associations between object pairs across
different modalities before object detection and relation clas-
sification. We leverage Hungarian Assignment to find the
associated pairs. Beyond this step, the remaining procedure
closely follows that of single-modality SG generation.

For open-vocabulary USG generation, we compute the
cosine similarity between each predicted object query em-
bedding and a set of class label embeddings derived from
CLIP [38]. The final label for each object is then assigned
based on the highest cosine similarity score. Similarly, pred-
icate classes are determined by selecting the label with the

closest cosine similarity to the text embeddings of all predi-
cate candidates.

E. Detailed Experimental Settings

E.1. Datasets

To evaluate the efficacy of USG-Par, which supports both
single-modality and multi-modality scene parsing, we utilize
existing single-modality datasets and a manually constructed
multimodal dataset.

E.1.1. Single-modal Dataset

The single-modality datasets used in our experiments are
categorized into the following four groups based on modality:

Image: 1) Visual Genome (VG) [22]. We follow the
protocols for the widely-used pre-processed subset VG150
[58], which contains the most frequent 150 entities and 50
predicates. The dataset contains approximately 108k images,
with 70% for training and 30% for testing. 2) Panoptic
Scene Graph (PSG) [59]. Filtered from COCO [29] and VG
datasets [22], the PSG dataset contains 133 object classes,
including things, stuff, and 56 relation classes. This dataset
has 46k training images and 2k testing images with panoptic
segmentation and scene graph annotation. We follow the
same data-processing pipelines from [59].

Video: 1) Action Genome (AG) [18] annotates 234,253
frame scene graphs for sampled frames from around 10K
videos, based on Charades dataset [46]. The annotations
cover 35 object categories and 25 predicates. The overall
predicates consist of three types of predicates: attention,
spatial, and contracting. 2) Panoptic Video Scene Graph
(PVSG) [60] consists of 400 videos, including 289 third-
person videos from VidOR [44] and 111 egocentric videos
from EpicKitchens [10] and Ego4D [14]. Among the videos,
62 videos feature birthday celebrations, while 35 videos cen-
ter around ceremonies, providing rich content for contextual
logic and reasoning.

3D: 3D Scene Graph (3DSG) [52] includes 1335 3D re-
constructed indoor scenes, 528 classes of objects, and 39
types of predicates.

Text: FACUTAL [28] is derived from VG [22] dataset,
which includes 4,042 classes of objects, 1,607 types of pred-
icates, and 40,369 instances.

E.1.2. Multi-modal Dataset

Here, we show the detailed process for constructing the USG
dataset involving two input modalities.



Input Image

Original Caption

Enriched Caption

A man sitting in a chair holds up a
toothbrush while opening a paper
bag.

A man sits in a cushioned armchair, holding a
blue toothbrush in one hand and an open paper
bag in the other. A TV remote rests on the
armrest, while a nearby table holds scattered
magazines and glasses.

A workspace with a laptop
displaying a green leaf wallpaper,
accompanied by a monitor, speakers,
a keyboard, and multiple mice on a
white desk.

David is sitting in front of the while desk and
watching the laptop. Black speakers, a white
keyboard, a smartphone on a red mouse pad
with a beer logo, and two wireless mice on a
white desk, all set in front of white curtains
with cables and a black dock behind.

3 A girl is playing ball in the park.

A girl plays with a ball in a park surrounded by
grass, trees, and a nearby pathway
accompanied with her mother and her dog.

A baby is playing with a balloon in
the living room.

A baby plays with a balloon on a rug in the
living room, surrounded by a sofa with
cushions, a coffee table holding magazines and
a remote, a toy box with stuffed animals and
blocks, and a TV paused on a cartoon

A small rectangular room with two
single beds positioned parallel to
each other along one wall, separated
by a small gap. A desk and chair are
located near the corner, with items
like books and papers scattered on
the desk.

A small rectangular room features two single
beds along one wall, separated by a narrow
gap, each with neatly tucked white bedding and
wooden frames. Between the beds, a small
bedside table holds a lamp and a water bottle.
Near the corner, a wooden desk with a
matching chair is cluttered with books, papers,
and a laptop, with a coffee mug and a desk
lamp placed on one side. Along the opposite
wall, a wardrobe with partially open doors
reveals hanging clothes and a suitcase stored at
the bottom.

An outdoor patio area with wooden
flooring and bordered by partial
fencing. At the center of the patio is
a rectangular outdoor table with a
glass top, surrounded by matching
wicker-style chairs, two of which are
pulled slightly away from the table.

An outdoor patio features wooden flooring
bordered by low, weathered wooden fencing
with vertical slats. At the center of the space
stands a rectangular outdoor table with a glass
top, supported by a metal or wicker frame.
Surrounding the table are four matching
wicker-style chairs with cushions. On the table,
a small ceramic planter with succulents and a
half-filled water glass rest alongside an open
book. A potted fern and a taller plant in a
terracotta pot sit near the fence on the left,
adding greenery to the scene

Figure 10. Examples of constructed Text-Image/Video/3D pair dataset with original caption and enriched caption.

Text-Image (S — 7). We leverage the three image caption
datasets: COCO caption [29], Conceptual (CC) caption [45],

and VG [22] caption to build the Text-Image pair-wise SG.

Specifically, following [21], we first employ the GPT-40 [37]
to extract the triplets from the original caption. Then, we
align entities in the triplets with entity classes of interest
and align predicates in the triplets with predicate classes of
interest. Finally, for the VG dataset with ISG annotation, we
link the textual and visual objects through label matching.
For the COCO and CC datasets without annotated SG, we
ground the extracted triplets over relevant image regions to
get localized triplets via state-of-the-art grounding methods,
i.e., Grounded SAM [41]. Finally, we led to utilizing 64K
images on the COCO caption dataset, 145K images on the

CC caption dataset, and 57K images on the VG caption
dataset. Furthermore, we utilize GPT-40 to rephrase and en-
hance captions, aiming to increase the diversity and richness
of textual descriptions, guided by the following prompts:

Rephrase and Enrich captions

Input Data: textual captions

Instruction: From the given sentence, the task is to enrich
the caption with reasonable scenes. Let’s take a few
examples to understand how to enrich the captions.

[Example-1]:

Input: A lady and a child near a park bench with kites
and ducks flying in the sky and on the ground.

Output: A lady and a child near a park bench surrounded
by lush greenery, with colorful kites soaring in the sky,




ducks flying overhead, and a few waddling on the ground.
Nearby, a serene pond reflects the vibrant scene, and
children can be seen playing in the background.

[Example-2]:

Input: Two men sit on a bench near the sidewalk and one
of them talks on a cell phone.

Output: Two men sit on a wooden bench near a bustling
sidewalk, shaded by nearby trees. One of them is engaged
in a conversation on his cell phone, gesturing slightly with
his free hand, while the other man sits calmly, gazing at
passersby.

We present two examples in the first two rows of Fig.
10. After generating the enriched captions, we apply the
aforementioned method used for the original captions to
produce the final pairwise text-image SG annotations.

Text-Video (S — V). To construct the text-video pairwise
USG dataset, we select 400 videos from ActivityNet [16],
which includes dense caption annotations. Following the
procedure for text-image pairs, we first extract triplets and
align the entities and predicates with relevant concepts. Fi-
nally, we track textual objects in the videos by integrating
frame-level object grounding results using Grounded SAM
[41]. Additionally, we enrich the video captions to create tex-
tual SGs, incorporating partially nonliteral associations with
the video content. We depict two examples in the middle
two rows of Fig. 10.

Text-3D (S — D). To construct the text-3D pairwise USG
dataset, we use the ScanRefer [5] dataset, which contains
46,173 descriptions of 724 object types across 800 ScanNet
[9] scenes. Triplets are extracted from these descriptions us-
ing GPT-40. Since ScanRefer provides object localizations,
we directly align textual entities with 3D objects to establish
associations between text and 3D data. Additionally, we
enrich the textual descriptions to create partially overlapping
text-3D USG datasets, enhancing diversity and coverage.
Two examples are demonstrated in the last two rows of Fig.
10.

Image-Video (Z — V). To construct the image-video pair-
wise USG dataset, we utilize the existing PVSG [60] video
dataset. Specifically, we select the first frame of each video
to construct frame-level ISGs. We then extract temporally
non-adjacent video segments as the corresponding pairwise
video. The associations between image objects and video
objects are derived from the original PVSG annotations, en-
suring accurate cross-modal connections.

Image-3D (Z — D). To construct the Image-3D USG
dataset, we leverage the existing 3DSG [52] dataset. Specifi-
cally, we randomly select 2D image views corresponding to
3D scenes. Using object annotations from the 3DSG dataset,
we ground the objects in the selected images to obtain their
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Figure 11. Performance of SGDet and association accuracy scores
under varying overlap ratios between the two modalities.

positional information. The relationships among the detected
objects are then derived from the original 3DSG annotations,
resulting in complete SG annotations for the 2D image views.
The associations between objects in the image and 3D scenes
are determined by whether the 3D objects can be success-
fully grounded in the image. By integrating ISGs, 3DSGs,
and association relations, we construct the final Image-3D
pairwise USG dataset.

E.2. Implementations

We initialize the text and image encoders using Open-
CLIP [38], where the specific version of the image encoder
is ConvNext-L. we design the pixel decoder by following the
approach in [7, 27]. For the point encoder, we adopt Point-
BERT [63] as the initialization, and for the point decoder,
inspired by [63], we implement a hierarchical propagation
strategy with distance-based interpolation. After the encod-
ing, all the features are projected into a 256-dimension using
a linear layer. The mask decoder follows the design in [7].
We set the number of predefined learnable queries to 100.
The number of layers L™mesk ig get as 9, with 3 transformer
layers per scale. The object associator is implemented as a
3-layer CNN with a kernel size of 3 x 3. For the two-way
relation-aware object/subject module, the number of layers,
Lrpc, is set to 4. The relation decoder comprises a 6-layer
transformer with an embedding dimension of 256. During
training, we used the AdamW optimizer with an initial learn-
ing rate of 10e — 4 and a weight decay of 10e — 4. For
the object detection loss weights, we set the A.. = 5.0 and
Adice = 5.0, and A\, = 2.0 for predictions matched with
ground truth and 0.1 for the “no object”. In the final loss, we
set the loss weights « = 1.0, 8 = 1.0 and § = 0.8, n = 0.6.

F. Extended Experimental Results

We exhibit more experimental results here.

The Impact of the Overlap Ratio. We delve into the
analysis of the overlap ratio and its crucial role in influencing
the performance of USG-Par. To this end, the S — Z, S — Z,
and S — 7 datasets are divided into five groups with overlap
ratios ranging from 0.0 to 1.0. The results, presented in
Fig. 11, indicate that as the overlap ratio increases, the model
achieves more accurate SG generation. This improvement
can be attributed to the increased similarity between the
two modalities, where complementary information enhances



S I Vv D S$S-IT S-V §S-D 1I-V I-D
28.4 369 53 38.7 216 14.5 7.9 10.7 18.7
251 X X X - - - - -
27.6 340 x X 16.0 - - - -
28.1 349 49 x 19.2 14.0 - - -

Table 1. The ablation of modality unification. mR @20 scores are
reported.

-V Z—-D

e Only Corresponding Supervision.
25.1 18.4

® No Supervision.
234 16.8

Table 2. Emergent zero-shot on the Z — V/D dataset, where the
model is only trained on S — Z/V /D data.

SG recognition performance. Furthermore, a higher overlap
ratio allows the model to establish more precise associations
between objects across modalities.

The Effect of Modality Unification. Tab. | compares
the performance of our method across different numbers of
unified modalities. The results demonstrate that incorporat-
ing additional modalities consistently improves performance
across all datasets. This observation highlights the com-
plementary nature of information across modalities when
representing a scene. By unifying multiple modalities, our
model effectively leverages this complementary informa-
tion, resulting in enhanced performance compared to using
a single modality alone.

The Emergent Capability of USG-Par. Tab. 2 presents
the emergent zero-shot SG generation performance on Z — V
and Z — D, where USG-Par is trained solely on S — Z/V/D.
The results indicate that our model achieves performance
comparable to supervised learning approaches. This demon-
strates the strong capability of USG-Par to align image,
video, and 3D modalities effectively, leveraging text as a
unifying bridge.

More Visualizations. Here, we provide more visualiza-
tions of generated USG from various input modality combi-
nations, including 1) text + image in Fig. 12, 2) text + video
in Fig. 13, and 2) image + 3D in Fig. 14.

A man sits in a cushioned armchair, holding
a blue toothbrush in one and an open
paper bag in the other. A TV remote rests
on the , while a nearby table holds
scattered magazines and glasses.
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Figure 12. Visualization of USG generated from text and image

A girl plays with a
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Figure 13. Visualization of USG generated from text and video
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Figure 14. Visualization of USG generated from 3D and the corre-
sponding view image.
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