Appendix of WeatherGen: A Unified Diverse Weather Generator for LIDAR
Point Clouds via Spider Mamba Diffusion

A Appendix

In this Appendix, we provide additional information. In
Section A.1, we introduce the process of projecting LIDAR
point clouds onto range maps; In Section A.2, we introduce
more detailed architectures of spider mamba and latent fea-
ture aligner; In Section A.3 we introduced the setting of
training steps; In Section A.4, we provide analysis and vi-
sualization comparison between generations of different de-
noising steps; In Section A.5, we provide visual compar-
isons with other methods in promoting 3D object detection;
In Section A.6, we show the capability of WeatherGen in
handling the LiDAR point cloud densification task; In Sec-
tion A.7, we introduce the different parameter settings in
map-based data producer, as well as the customized gener-
ation results; In Section A.8, we present more generation
results under diverse weather conditions, including clear
weather, snowy, foggy, and rainy days. In Section A.9, we
discuss the limitations and broader impacts of WeatherGen
and provide possible solutions.

A.1 LiDAR Data Representation

In outdoor scenes, LiDAR point clouds are often very sparse
and irregular. The range map has been proven to be a suc-
cessful representation of LiDAR data, overcoming the spar-
sity and irregularity issues of LiDAR point clouds [2, 8, 9].
In the task of LiDAR point cloud generation, recent meth-
ods also utilize range maps as the representation form of
LiDAR data [10-13, 15, 17].

The range map is a representation method with virtually
no information loss [9]. As shown in Figure 1, we transform
the coordinate space of each point, projecting it from Carte-
sian coordinates r = (z,y, z) € R? to spherical coordinates

s€ (0,¢,d):
d=+/z%+y*+ 22,
0 = arccos(z/vx? +y? + 22), 1
¢ = atan2(y,z),

where 6 is the inclination, ¢ is the azimuth, d is the depth.
d is further converted into the logarithmic representation
d = log(d+1)/1og(dmaz + 1) € [0, 17", We can

obtain a two-channel range map by performing the same
operation on the intensity channel and the depth channel.
For a 64-beam LiDAR, we set the dimensions of both depth
and intensity to 64 x 1024, making this an almost lossless
data transformation method. A row in the range map corre-
sponds to a beam circle obtained from a full rotation scan
by the LiDAR sensor, and a column in the range map corre-
sponds to the central ray acquired from the emission of the
LiDAR sensor.

Azimuth 709

Inclinati
z . A X

] Inclination
Azimuth

LiDAR sensor Y 180° 270° 0° 90° 180°

Figure 1. The conversion process from the LiDAR point cloud to
the range map.

A.2 More Detailed Architectures

In Figure 2, we show additional visualization details of the
spider mamba and latent feature aligner to gain a more intu-
itive understanding of the structure. The content displayed
in Figure 2 matches the descriptions in the corresponding
part of the main text. The spider mamba models feature in-
teractions along the LiDAR beam circles and central rays,
which correspond exactly to the rows or columns of the
range map and are more consistent with the imaging method
of LiDAR. The latent feature aligner can pull the generated
results closer to real-world data in the latent space, which
can greatly expand the domain boundaries of small-scale
real-world data, and is beneficial for learning a broader and
more universal set of real-world knowledge [14, 16].

The process of fusing the time step embedding t and the
weather control signal w is straightforward like the Group
Normal. We first project t and w into the same space
through the linear layer, and then, we chunk them into the



scale and shift and integrate them into the intermediate fea-
tures H, the process is following:

Houtput - (Hinput : (tscale + wscale)) + (tshift + Wshift)~
(2)
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Figure 2. More detailed architectures of the spider mamba and
latent feature aligner.

Table 1. Quantitative comparisons with different fine-tuning steps
on Seeing Through Fog [1] under snow heavy test split.

Point cloud Range map
FPD| FRDx10'| MMDx10~* ] JSDx107! |

BEV occupancy grid

Fine-tuning steps

50,000 68.19 143.09 1.94 0.83
100,000 61.28 123.59 1.72 0.89
150,000 59.28 124.17 1.71 0.77
200,000 58.74 124.90 1.64 0.72
250,000 58.32 129.14 1.84 0.75
300,000 58.02 124.97 1.80 0.82

A.3 Training Steps Analysis

Our model is first trained on KITTI-360 for 300,000 steps
with a learning rate of 0.0004 and a batch size of 8. If the
device allows, a larger batch size is beneficial. After the pre-
training, we no longer use map-based data producer but di-
rectly fine-tune with the small-scale diverse weather LIDAR
data provided by Seeing through fog [1] for 150,000 steps,
with a learning rate of 0.0001 and a batch size of 8. The
whole training time on 4 RTX 3090 GPUs is around 100
hours. It needs to be emphasized that the diverse weather
LiDAR data provided by Seeing through fog is on a small
scale and insufficient to support direct training, the relevant
experimental results can be found in the “Ablation study ”
of the main text. Table 1 presents the experimental results
for different fine-tuning steps. It can be observed that after
150,000 steps, the improvement in metrics is very limited.
Setting the steps of fine-tuning to 150,000 strikes an optimal
balance between performance and training time.

A.4 Denoising Steps Analysis

In Figure 3, we carry out an unconditional generation de-
noising steps analysis for four methods and present the visu-
alization effects of WeatherGen at different denoising steps.
It can be observed that from 128 steps to 256 steps, the
model improvement is relatively small. The performance
enhancement becomes quite limited when increasing from
256 steps to 1024 steps. Despite achieving minor improve-
ments, the time consumption has quadrupled. Utilizing the
results from 256 steps is more sufficient. Using 256 steps is
the most appropriate approach.

A.5 Visual Comparisons with Other Methods in Pro-
moting 3D Object Detection

In this section, we provide a visual comparison with other
competitive methods LSS [4], FSRL [3], and LISA [5]
in terms of promoting 3D object detection in snow, fog,
and rain weather scenes. From Figure 4, we can see that
the mini-weather dataset created using our WeatherGen can
more effectively promote the downstream task, resulting in
a significant improvement in detection accuracy, while other
methods exhibit more missed and false detections.

A.6 LiDAR Point Cloud Densification

Densifying existing sparse LiDAR point clouds (less than
64 beams) also can significantly reduce data collection
costs. WeatherGen is also capable of this task, we con-
duct a comparison with the most competitive R2DM [11]
on top of Repaint [7]. For effectively evaluating, we em-
ploy RangeNet [9] for semantic segmentation on both the
initial and the densification, aiming to observe whether the
consistency in semantic information is well preserved. In
addition to observing the completeness and realism of the
LiDAR point clouds, we also need to verify the rationality.
As shown in Figure 5, we present the original LiDAR point
clouds and their segmentation results. The first row shows
the original LiDAR point cloud, the semantic segmentation
results, and the point cloud absence at three different levels
of severity. Immediately below, we show the completion re-
sults from various methods along with their corresponding
semantic segmentation results. Among them, 10 % reserved
(where 90% of the points are randomly removed) is the
most challenging scenario, while 25% reserved (16-beam)
and 50% reserved (32-beam) are more common scenarios.
R2DM [11] and Text2LiDAR [15] encounter extensive er-
rors when completing roads, while WeatherGen, benefiting
from the spider mamba mechanism, modeling the feature
interactions in a per-beam manner, effectively densifies the
road surface information. It is evident that the densification
by WeatherGen aligns more closely with the characteristics



of the real, and the generation of semantic information is
more complete and accurate.

Figure 6 presents more densification results. It can be
observed that WeatherGen’s ability to complete details is
quite outstanding, which provides opportunities for densi-
fying existing low-density data.

A.7 Customized Diverse Weather LiDAR Point Clouds
Generation

WeatherGen supports LiDAR data generation under any
severity level of weather conditions. Since the data in See-
ing Through Fog is not collected under extremely severe
weather conditions, the data in our experiments are all ob-
tained with the map-based data producer parameters set to
common. Snow, fog, and rain have their respective 7,
BDF’s droprate, and the number of noise points in R, set to
{0.13,0.60, 1000}, {0.24,0.50,1800}, {0.20,0.30,100}.
No matter which parameter setting is used, the generation
results for each type of weather data are diverse. Fig-
ure 7 shows the generation effects under different degrees
of adverse weather conditions. When generating data for
extremely adverse weather conditions, due to the lack of
real-world collected data, we will not employ subsequent
fine-tuning. In theory, we can generate an infinite variety
of weather conditions for LiDAR data, which can be cus-
tomized for different application regions.

A.8 More Visualizations of Diverse Weather Genera-
tions

We provide more visualizations of LiDAR point cloud data
generated under diverse weather conditions, such as clear,
snow, fog, and rain. The generation under clear weather
conditions is the unconditional generation. Figure 8, Fig-
ure 9, Figure 10 and Figure 11 showcase more genera-
tion results and details. As we can see, WeatherGen accu-
rately reflects the characteristics of LIDAR point clouds un-
der diverse weather conditions, including varying degrees
of noise and missing data at different distances. Under
clear weather conditions, the generated results are very di-
verse, with generated objects having clear edges and con-
tours. Under snowy conditions, the generated LiDAR
data exhibits properties characteristic of snow, with some
noise points appearing. Since snow often accompanies wet
ground, there is a situation of partial point drop on the
ground, which is consistent with the characteristics of real-
world data. Under foggy conditions, the generated LiDAR
point cloud shows more significant attenuation at a slightly
farther distance, with more point drops occurring. Targets
in the scene also exhibit unclear contours due to the at-
tenuation effect brought by fog. Under rainy conditions,
due to the irregular refraction of raindrops, a small num-
ber of noise points appear, and more characteristically, the

wet ground brings about point drops in the generated re-
sults. These are all consistent with the characteristics of
real-world diverse weather LiDAR data, further proving the
superiority of WeatherGen.

A.9 Limitations and Broader Impacts

Despite WeatherGen achieving excellent results in the di-
verse weather generation, it still has some shortcomings.
The main issue is that WeatherGen lacks the capability to
generate scenes containing rare targets effectively. Sec-
ondly, WeatherGen is not yet able to accurately generate
LiDAR data for rare weather conditions, such as sleet. Col-
lecting more data that includes rare objects and data from
rare weather conditions is very beneficial for the model in
overcoming the difficulties mentioned above.

In terms of broader impacts, WeatherGen is very likely to
be customized for large cities to promote the rapid develop-
ment of autonomous unmanned devices, which will further
increase the imbalance in urban development, hinder the
sharing of technology, and cause potential social injustice.
To guard against such situations, a relevant usage scenario
survey can be conducted, and appropriate usage permission
restrictions can be implemented. Furthermore, when cre-
ating a diverse-weather LIDAR dataset using WeatherGen,
training or guidance from professionals is required. Other-
wise, it may lead to low-quality data annotation and sample
imbalance, potentially contaminating existing datasets [6].
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Figure 3. Denoising steps analysis and visualization comparisons.
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Figure 4. Visual comparisons with other competitive methods in promoting 3D object detection.
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Figure 5. Visual comparisons of LiDAR point cloud densification task with R2ZDM.
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Figure 6. More LiDAR point cloud densification results of WeatherGen.
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Figure 7. Different-degree weather-conditioned generations and parameter trends.



Figure 8. Visualizations of LiDAR point cloud generated under clear weather conditions.



Figure 9. Visualizations of LiDAR point cloud generated under snowy weather conditions.



Figure 10. Visualizations of LiDAR point cloud generated under foggy weather conditions.



Figure 11. Visualizations of LiDAR point cloud generated under rainy weather conditions.
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