OW-0VD: Unified Open World and Open Vocabulary Object Detection

Supplementary Material

A. Datasets

Tab. 5 presents the partition details of M-OWODB
and S-OWODB. M-OWODB combines the COCO[33] and
VOC[9] datasets and considers all VOC categories as Task
1, with subsequent tasks organized according to the super-
classes listed at the top of Tab. 5. For example, in Task 3,
the Sports and Food superclasses are added, with these cat-
egories annotated across 39,402 training images, containing
114,452 annotated instances. During testing, the instances
of these categories are treated as known, reducing the num-
ber of test images and instances to 1,642 and 4,826, respec-
tively. However, OW-DETR[16] notes that M-OWODB
exhibits inconsistencies in superclass partitioning, leading
to overlap of subclasses within the same superclass across
tasks. The similarity among these subclasses introduces po-
tential data challenges. To address this, S-OWODB was
proposed. Unlike M-OWODB, S-OWODB includes only
COCO dataset categories and organizes them strictly by su-
perclass. This ensures that the detector does not encounter
objects from the same superclass in subsequent tasks. For
instance, in S-OWODB, the Furniture superclass is assigned
to Task 2. Compared to M-OWODB, S-OWODB offers a
more consistent partitioning, making it a more generalizable
evaluation benchmark.

B. Hyperparameter analysis

When evaluating the impact of hyperparameters on
model performance, we introduce additional configurations
distinct from the incremental comparisons presented in Ta-
ble 4. For instance, we include out-of-distribution probabil-
ity and known uncertainty as part of the baseline settings. In
addition, to select appropriate parameters, we hold all other
adjustable parameters constant. When evaluating the effect
of a, B is set to 0.5 and + is fixed at 1. When adjusting the
[ parameter, we use the previously selected « and keep the
~ parameter fixed at 1.

a, Eq. (3). Tab. 6 shows the impact of o on model
performance. With task-aligned learning (TAL)[12], pre-
dictions with high Intersection over Union (IoU) relative
to annotated data are assigned higher scores during match-
ing. Thus, unlike traditional classification-oriented learning
methods that assign binary scores of 0 (negative sample)
or 1 (positive sample), TAL assigns scores on a continuous
scale from O to 1. To classify samples assigned by TAL,
we set a threshold, a, where samples with scores above a
are considered positive, while those below « are considered
negative. For threshold setting, we follow the COCO eval-
uation toolkit’s verified threshold intervals, using values in

the range of 0.5 to 0.95 with an incremental step of 0.05.
The results are displayed in Tab. 6. Our model exhibits
low sensitivity to threshold settings, likely due to the vol-
ume of annotations. Unlike in application scenarios, COCO
has a larger volume of annotations, so higher thresholds do
not reduce the availability of positive samples. In practical
datasets, it may be advisable to lower the threshold. In the
M-OWODB dataset, we select a threshold of 0.55, while for
S-OWODB, we choose 0.75.

By Eq. (6). Tab. 7 presents the impact of the parame-
ter S on model performance. To prevent the selected at-
tributes from being too similar, we incorporated a similarity
constraint. In each iteration of selection, we combined the
distribution similarity index with the average similarity of
the current attributes and the selected attributes to filter out
attributes similar to the ones already chosen. The balance
between the combination of these factors is achieved using
a hyperparameter, 5. When the value of beta is set too high,
the similarity constraint during selection becomes smaller,
and vice versa. As shown in Tab. 7, when the attribute con-
straint is small, the selected attributes are too similar, result-
ing in significantly lower performance compared to other
settings, both in the M-OWODB and S-OWODB bench-
marks. As the value of beta is gradually increased, the per-
formance of both benchmarks tends to stabilize. The U-
mAP of M-OWODB stabilizes around 7.2, while that of S-
OWODRB stabilizes around 21. According to the data in the
table, we selected a value of 0.2 for M-OWODB and 0.3 for
S-OWODB.

v, Eq. (7). Tab. 8 shows the performance variation of
our OW-OVD with respect to the gamma parameter. Using
a single attribute yields high recall rates, such as achiev-
ing 53.5 U-Recall in M-OWODB. However, using a single
attribute increases uncertainty in object descriptions. This
single-attribute approach results in the lowest cumulative
detection performance (U-mAP), with values of 7.4 in M-
OWODB and 21.7 in S-OWODB. By using the weighted
sum of multiple attributes (i.e., P), the detector yields sig-
nificant improvement, with U-mAP increasing from 7.4 to
8.6 in M-OWODB and from 21.7 to 23 in S-OWODB. How-
ever, the recall capability of the detector drops from 53.5
to 50 in M-OWODB and from 80.4 to 76.2 in S-OWODB.
Given that mAP is the widely accepted metric for evaluat-
ing object detectors, our parameter selection prioritizes op-
timizing U-mAP. Therefore, we set the gamma value to 10
for both datasets.

Incremental learning. Tab. 9 illustrates the perfor-
mance variations of parameter « in incremental learning.
As tasks progress and the detector encounters an increasing



Table 5. Dataset Details. M-OWODB and S-OWODB represent the two divisions proposed by ORE[21] and OW-DETR[16], respectively.

M-OWODB \ Task 1 Task 2 Task 3 Task 4

Semantic Solit VOC Outdoor, Accessories Sports,  Electronic, Indoor,
p Classes Appliances, Truck Food Kitchen, Furniture

# train images 16551 45520 39402 40260

# test images 4952 1914 1642 1738

# train instances 47223 113741 114452 138996

# test instances 14976 4966 4826 6039

S-OWODB Task 1 Task 2 Task 3 Task 4

. . Animals, Persion  Appliances, Accessories  Sports, Electronic, Indoor,
Semantic Split

Vehicles Outdoor, Furniture Food Kitchen

# train images 89490 55870 39402 38903

# test images 3793 2351 1642 1691

# train instances 421243 163512 114452 160794

# test instances 17786 7159 4826 7010

Table 6. Impact of hyperparameters in Eq. (3) on performance (). Table 8. Impact of hyperparameters in Eq. (7) on performance (7).
Settin g\ M-OWODB | S-OWODB Setting | M-OWODB | S-OWODB
a |U-mAP U-Recall mAP|U-mAP U-Recall mAP v |U-mAP U-Recall mAP|U-mAP U-Recall mAP
0.5 7.2 53 69.3| 20.2 798 774 1 7.4 535 693| 21.7 804 774
0.55 7.3 535 693| 203 798 774 2 7.8 528 693| 21.8 79.7 78.5
0.6 7.3 535 69.3| 20.2 798 774 3 8.1 524 693| 224 79.1 78.6
0.65 7.3 534 693| 20.2 798 774 4 8.3 523 693| 227 78.6  78.6
0.7 7.3 535 693| 202 798 774 5 8.5 519 693| 228 782 78.6
0.75 7.3 534 693| 215 80.2 774 6 8.5 51.1 694 229 77.8 78.6
0.8 7.3 533 693| 204 80.2 773 7 8.5 50.8 69.3| 229 775 78.6
0.85 7.3 533 693| 214 80.1 774 8 8.5 50.6 693| 229 77.1  78.6
0.9 7.2 528 693| 213 803 774 9 8.6 503 693| 229 76.8 78.6
0.95 7.1 5277 693 21.1 80.1 774 10 8.6 50 69.4| 23 76.2 78.6
Table 7. Impact of hyperparameters in Eq. (6) on performance (/3). Table 9. Impact of hyperparameters on incremental learning (cv).

Setting ‘ M-OWODB ‘ S-OWODB Setting ‘ M-OWODB ‘ S-OWODB
B |U-mAP U-Recall mAP|U-mAP U-Recall mAP o (T2) |U-mAP U-Recall mAP|U-mAP U-Recall mAP
0.1 59 526 692| 174 794 772 0.55 4.0 514 556| 175 79.8  69.6
0.2 7.4 535 693 20.6 804 774 0.6 4.1 51.5 55.6| 18.1 79.8 69.6
0.3 7.3 535 693| 21.7 804 774 0.65 4.0 51.5 55.6| 18.1 79.8  69.6
0.4 7.3 534 693] 21.5 80.2 774 0.7 42 51.6 556| 18.0 79.8  69.6
0.5 7.3 535 693| 214 80.2 774 0.75 4.2 51.6 556| 178 80.2 69.6
0.6 7.3 534 693| 20.2 798 774 0.8 4.2 51.6 55.6| 16.6 80.2 69.6
0.7 7.2 53.0 693]| 21.6 80.1 774 0.85 42 51.6 55.6| 16.2 80.1 69.6
0.8 7.1 533 693| 21.6 80.1 774 0.9 43 51.6 55.6| 16.1 80.3 69.6
0.9 7.1 533 693] 215 80 77.4 0.95 4.3 51.7 55.6| 163 80.1 69.6




number of known object classes, the difficulty of attribute
selection intensifies. This is because many attributes pos-
sess category-specific characteristics, making the selection
process considerably more challenging. As shown in Tab. 9,
the threshold « in Eq. (3), used to differentiate positive and
negative samples, has a pronounced impact on model per-
formance. In the S-OWODB benchmark, the detector’s sen-
sitivity to threshold « increases markedly in later tasks. The
performance gap between different settings widens to 2.0
U-mAP, compared to only 1.3 in Task 1. Additionally, in
the M-OWODB benchmark, a higher threshold is required.
This is attributed to the detector’s comparatively poorer per-
formance in M-OWODB relative to S-OWODB, indicating
that OW-OVD struggles more with distinguishing unknown
classes and thus necessitates more precise attribute match-
ing. Conversely, in the S-OWODB benchmark, the detector
exhibits superior performance in handling unknown classes,
allowing for a lower threshold setting. Therefore, we select
0.95 and 0.6 as the parameter settings for M-OWODB and
S-OWODB, respectively.

C. Addition comparison

C.1. Implementation Details

M-OWODB and S-OWODB. GT denotes the use of un-
known class names as prompts, representing the upper limit
of the OVD model’s capacity to detect unknown classes.
FOMO/LLM employs a large language model (LLM) to
predict potential unknown object class names. Given a
list of known class names, the LLM is tasked with infer-
ring the names of unknown object classes. FOMO/IN uti-
lizes class names from the Imagenet[6] as unknown ob-
ject class names. To prevent potential leakage, any class
names that overlap with genuinely unknown objects are ex-
cluded. To ensure minimal modification, we evaluate us-
ing the class names provided by FOMO. FOMO training
consists of three phases: attribute selection, attribute adap-
tation, and attribute refinement. During the attribute selec-
tion phase, a weighted sum of attribute similarities is used
to predict known objects (as shown in Fig. 3, left). After
training on known classes, linear layer weights are used to
select attributes most similar to each known class. During
the attribute adaptation phase, attribute embeddings are ad-
justed to reduce their distance to the mean embedding. In
the attribute refinement phase, the focus is on training the
distance between attribute embeddings and labels. Due to
the use of batch normalization (BN) in YOLO-World’s con-
trastive learning head, which differs from conventional con-
figurations, the processing flows for visual and image re-
gions are incompatible. Consequently, vision-guided fine-
tuning is not applicable. In the attribute adaptation phase,
instead of minimizing the distance between average simi-
larities, we directly train adaptive embeddings.

Figure 5. Visualization. The first column presents the performance
of our OW-OVD, while the second column displays the results of
FOMO. All images are sourced from the S-OWODB test set.

Incremental learning. Similar to the OWOD setting,
we employ zero-shot testing to assess the generalization
capability of the OVD detector under incremental learn-
ing tasks. The incremental learning training pipeline for
FOMO differs from the OWOD benchmark, as we only em-
ploy the attribute refinement approach. Since the number of
attributes generated in VOC is significantly lower than in
M-OWODB and S-OWODB, we omit the original attribute
selection and adaptation stages. In fact, applying the orig-
inal three-stage process does not yield good performance
because FOMO relies on attribute predictions for known
classes. It is noteworthy that during the attribute refine-
ment stage, we simultaneously train both the attribute em-
beddings and the linear weights, a modification that leads
to better outcomes compared to the original setup. Addi-
tionally, because FOMO'’s original implementation does not
support incremental learning, it continues to use annotations
from the previous task in Task 2. Consequently, in our in-
cremental learning experiments, we trained separate models
for each task and then merged their linear weights and at-
tribute embeddings to support incremental learning tasks.

C.2. Performance Comparison

U-mAP. We conducted a performance comparison be-
tween OW-OVD and the FOMO series, with detailed re-
sults presented in Tab. 10. The FOMO series includes two
models: FOMO/LLM and FOMO/IN. FOMO/LLM relies
on a large language model to predict potential object class
names; however, due to the inherent limitations in the lan-
guage model’s prediction accuracy, the overall performance
is suboptimal. In Task 1, regardless of whether the M-
OWODB or S-OWODB dataset was used, FOMO/LLM did
not exceed 1 U-mAP. FOMOV/IN, on the other hand, em-
ploys ImageNet[6] class names as prompts for unknown



Table 10. Comparison of open-world object detection performance. GT represents zero-shot test results using all unknown categories as
prompts. FOMO/LLM denotes the prediction of potential objects using a large language model. FOMO/IN indicates the prediction of
unknowns based on ImageNet[6] categories. Our OW-OVD demonstrates a significant lead with remarkable performance.

Task IDs(—) |  Task1l | Task 2 \ Task 3 \ Task 4
U-mAP mAP (1) | U-mAP mAP(1) U-mAP mAP(1) mAP(1)
Method Current Previously Current Previously Current Previously Current
™ Known ™ Known Known Both| (1) Known Known Both Known Known Both
Base+GT 23.8 69.0 20.0 69.0 40.5 54.8| 18.0 54.8 29.8 46.5| 465 24.1 409
FOMO/LLM 0.4 67.9 0.3 67.9 40.6 542| 02 542 29.8 46.1 46.5 24.1 409
FOMO/IN 0.5 67.5 0.4 67.4 39.6 535 03 53.5 299 457| 465 24.1 409
FOMO 2.6 68.4 1.6 67.4 404 539 13 53.5 26.8 44.6| 465 24.1 409
Ours:OW-OVD| 8.6 69.4 4.3 69.5 417 55.6| 4.0 55.5 29.8 47.0| 47.0 25.2 41.6
Base+GT 54.6 76.9 54.4 77.0 569 664 | 549 66.4 53.8 622 622 54.0 60.2
FOMO/LLM 0.2 76.9 0.4 76.9 569 66.4| 0.3 66.4 53.8 622 622 540 602
FOMO/IN 0.3 76.9 0.4 76.9 56.8 66.4| 03 66.3 53.7 622 622 54.0 60.2
FOMO 9.5 75.3 5.6 72.5 546 63.1| 4.7 63.5 48.1 584| 563 475 54.1
Ours:OW-OVD| 23.0 78.6 18.1 78.5 61.5 69.6| 16.9 69.6 551 64.7| 648 56.3 62.7

Table 11. Comparison of incremental object detection performance. The table compares the performance of OW-OVD with FOMO in
incremental learning on the PASCAL VOC dataset[9]. The table shows three category splits: 10+10, 1545, and 19+1. The grey areas
indicate the new categories introduced in the second task. mAP represents the mean average precision at the end of all training tasks.

10+10 setting aero cycle bird boat bottle bus car cat chair cow table dog horse bike person plant sheep sofa train tv mAP
Base+GT 97.7 963 913 62.7 73.6 962 92.5 953 744 90.6 77.5 94.1 97.6 957 91.8 52.7 91.7 80.6 954 81.3 86.4
FOMO 522 919 67.7 448 513 73.0 77.2 91.6 62.1 67.8 85.5 90.6 729 912 73.6 454 652 852 874 77.1 72.7
Ours: OW-OVD 97.3 96.1 90.9 73.4 77.1 95.7 923 953 75.2 89.3 79.2 94.0 973 949 915 53.7 90.3 825 953 823 87.2
15+5 setting aero cycle bird boat bottle bus car cat chair cow table dog horse bike person plant sheep sofa train tv mAP
Base+GT 97.7 963 913 62.7 73.6 962 92.5 953 744 90.6 77.5 94.1 97.6 957 91.8 52.7 91.7 80.6 954 81.3 86.4
FOMO 84.4 945 76.7 649 464 91.5 7577 932 643 819 83.6 90.6 769 935 782 499 72.1 76.1 919 51.6 76.9
Ours: OW-OVD 97.1 96.0 90.6 74.5 76.8 95.7 924 95.0 74.7 87.6 79.6 944 97.4 944 915 549 89.0 81.4 953 79.3 86.9
19+1 setting aero cycle bird boat bottle bus car cat chair cow table dog horse bike person plant sheep sofa train tv mAP
Base+GT 97.7 963 913 62.7 73.6 962 92.5 953 744 90.6 77.5 94.1 97.6 957 91.8 52.7 91.7 80.6 954 81.3 86.4
FOMO 82.8 943 79.7 47.3 552 92.6 77.0 93.7 540 74.6 85.1 925 93.1 92.8 772 477 76.0 88.2 919 56.1 77.6
Ours: OW-OVD 97.0 96.0 90.8 75.1 763 953 92.4 950 75.0 86.3 789 943 972 943 91.6 52.1 90.0 822 954 80.4 86.8

objects. Nevertheless, because it does not include any ac-
curate unknown class names, the theoretical detection ac-
curacy is expected to be near zero. In contrast, FOMO
leverages attribute-based predictions for unknown objects,
which provides a notable advantage over using exact class
names. Attributes serve as more generalized representa-
tions, enhancing the OVD detector’s ability to recognize
objects in unseen scenarios. On the M-OWODB bench-
mark, FOMO achieved a U-mAP of 2.6, and on the S-
OWODB benchmark, it reached 9.5 U-mAP, significantly
outperforming both FOMO/LLM and FOMO/IN. Despite
FOMO'’s improvements, our OW-OVD model consistently
demonstrated a marked performance advantage across most
metrics. In the M-OWODB benchmark, OW-OVD sur-
passed FOMO by 6 U-mAP (an increase of 230%), and

in the S-OWODB benchmark, it outperformed FOMO by
13.5 U-mAP (a 142% increase). Furthermore, in subse-
quent tasks, OW-OVD continued to lead. In Task 2 and
Task 3, OW-OVD achieved U-mAP scores of 18.1 and 16.9,
respectively, compared to FOMO’s scores of 5.6 and 4.7,
resulting in a substantial advantage of 12 U-mAP and 12.2
U-mAP. Our OW-OVD model employs HAUF rather than
a linear layer for unknown object prediction, thereby re-
taining the zero-shot detection capabilities of OVD. Con-
versely, FOMO relies on a linear layer for known class pre-
dictions, which causes a decline in performance as the num-
ber of known classes increases. This reliance can even lead
to worse performance compared to zero-shot testing (60.2
vs. 54.7). In contrast, OW-OVD overcomes this limitation,
maintaining robust performance (60.2 vs. 62.7).



Shape is_headlights
Enviropment

s party or _celebration scene
Behavior is rder g

ding on ledge

Elephant,_trunk Context is fence_surrounding the court

Features is navigation lights

Context is graffiti on wails

Context is boarding passengers
Behavior is pedestrians crossing when light is red

Context is_fishing equipment or gear

Environment is river Shape is pivot point between blades

Environment is Houseplant

Context is dock or pier

Texture is furry

95

57
41

S-OWODB

99
95

114

81
64
59 q 59

45 46

25 23 24

Figure 6. Attribute analysis. The word cloud at the top illustrates the selection order of attributes, where larger font sizes indicate
higher selection priority. The bar chart at the bottom presents the distribution of the number of occurrences for each attribute category
after selection. The horizontal axis of the bar chart represents the following categories: Shape, Color, Texture, Size, Context, Features,
Appearance, Behavior, Environment, and Material. The first two columns on the left correspond to Tasks 1 and 4 of M-OWODB, while
the two columns on the right pertain to S-OWODB. To ensure clarity, only the top 500 attributes are displayed in the figure.

incremental learning. Tab. 11 presents a comparative
analysis of the performance of our proposed OW-OVD and
FOMO in incremental learning. In zero-shot testing, the
OVD detector exhibited remarkable generalization capabil-
ities, achieving an mAP of 86.4. In contrast, FOMO, which
utilized the same OVD detector, demonstrated inferior per-
formance, recording an mAP of only 72.7 in the 10+10
setup, trailing behind the Base+GT by 13.7 mAP. However,
in the 15+5 and 19+1 configurations, FOMO’s performance
improved, with the gap narrowing to 9.5 mAP and 8.8 mAP,
respectively. Notably, FOMO displayed significant perfor-
mance fluctuations across the three tasks, increasing from
72.7 mAP in the 10+10 setting to 77.6 mAP in the 19+1
setup. This pronounced variability indicates that FOMO’s
performance on known categories is influenced by the num-
ber of unknown categories present. Such limitations were
also observed in earlier detectors. Our OW-OVD retains
the performance advantages of OVD, consistently outper-
forming in all three task divisions. Furthermore, the perfor-
mance of OW-OVD remains almost constant across these
three task settings, with only a 0.4 mAP difference. This
insensitivity to the number of newly introduced categories
in subsequent tasks gives OW-OVD a distinct advantage in
open-world scenarios.

Qualitative analysis. Fig. 5 presents a qualitative com-
parison between our proposed OW-OVD and FOMO on the
S-OWODB benchmark. Our OW-OVD demonstrates supe-

rior recall capability for unknown objects. In the first row,
OW-OVD successfully recalls the board and tissue on the
desk, whereas FOMO fails to detect them. In the second
row, OW-OVD successfully identifies the vehicle outside
the door as an unknown object, while FOMO fails to detect
it. Regarding detection accuracy, FOMO exhibits signifi-
cant shortcomings. In the first row, similar to SAM-based
methods, FOMO erroneously separates different parts of
the ladder and generates redundant predictions for the desk
lamp. In the second row, FOMO produces separate predic-
tions for objects under the car and incorrectly predicts the
pages on the computer screen. In contrast, our OW-OVD
handles these situations correctly.

D. Attribute analysis

Fig. 6 illustrates the attribute variations of the detector
following the application of the method for selecting fea-
tures with the greatest similarity between positive and neg-
ative samples. In the M-OWODB benchmark, a notable
change is observed in the increase in the number of shape
and material categories. Specifically, the number of Shape
attributes nearly doubled, rising from 56 to 99, while the
Material attributes increased from 28 to 46. This trend in-
dicates that as task complexity increases, the VSAS mech-
anism tends to prioritize more general and stable geomet-
ric and material features. This behavior also indicates that
these features exhibit higher similarity between positive and



negative sample regions. Conversely, the number of Con-
text and Behavior categories decreased significantly, espe-
cially for Behavior, which dropped from 44 to 15, repre-
senting a pronounced reduction. The count of Context at-
tributes decreased from 114 to 95, implying that the model
progressively relies more on context features when distin-
guishing between positive and negative samples, as these
features exhibit greater differentiation. In Task 1 of S-
OWODB, the numbers for Context and Behavior categories
were relatively high, at 95 and 41, respectively. This ob-
servation suggests that these categories encapsulate com-
mon context and behavior features shared across positive
and negative samples, leading the detector to retain them
as generalized attributes since they are challenging to dis-
tinguish effectively. In Task 4, the Context category saw a
substantial increase to 121, and the Behavior category rose
to 57. This upward trend indicates that as task complexity
intensifies, the detector recognizes more context and behav-
ior features as exhibiting commonality between positive and
negative samples, resulting in these attributes being priori-
tized during selection. This choice likely reflects the in-
creased environmental complexity in new tasks, where con-
textual information becomes more similar between sample
groups. As the number of known categories gradually ex-
pands, initial attributes are increasingly discarded during se-
lection. For instance, in M-OWODB, the attribute, feature
is truck cab, progressively diminishes and even vanishes by
Task 4. Meanwhile, in S-OWODB, the attribute environ-
ment is river disappears in Task 4, whereas attribute, mate-
rial is bamboo, becomes a primary selected attribute. These
changes suggest that with the addition of known categories,
attributes like shape gain greater importance in the detec-
tor’s decision-making process.

E. Pseudocode

The presented pseudocode describes our method for se-
lecting visual similarity attributes in a way that balances
generalizability and redundancy. In Step 1, we generate de-
scriptive attributes using a large language model, ensuring a
rich set of features. Step 2 encodes these features and class
names into a suitable representation for comparison. Steps
3 and 4 construct and normalize distributions of similarities
between positive and negative samples, which are crucial
for assessing the discriminative power of each attribute. Fi-
nally, Step 5 iteratively selects attributes by minimizing a
combined measure of JSD and redundancy, ensuring that
the selected features are both effective and diverse. This it-
erative selection process continues until our stopping crite-
ria are satisfied, which ensures that the algorithm efficiently
converges on a robust set of attributes. Consistent with prior
work[63], we select 25 attributes for each category.

The presented pseudocode outlines our Hybrid Attribute-
Uncertainty Fusion (HAUF) inference method, designed to

Algorithm 1 Attribute Generation and Visual Similarity At-
tribute Selection (VSAS)

Require: CategoryNames, TrainingSet, LLM, TextEn-
coder, VisualEncoder, BoxHead, ContrastiveHead,
JSD, 3

Ensure: Selected Attributes Eatt

1: Step 1: Attribute Generation

Eou <0

for each category name in CategoryNames do

features <— LLM.GenerateFeatures(category name)
sentences <— ConstructSentences(features)
E.4 +— E,4 U TextEncoder.Encode(sentences)

end for

Step 2: Class Embedding

FE¢ < TextEncoder.Encode(CategoryNames)

Step 3: Distribution Construction

CEL 0B, 0

: for each image I in TrainingSet do

E,;s < VisualEncoder.Encode(])
P.;s + BoxHead.Decode(Fy;s)
Pyoy < ContrastiveHead.Decode(Fy;s)
matchedScores <— MatchScores(P.;s, Pyoz, GT)
for each score in matchedScores do
if score > « then
E;ris A E:)ris U EU%S[Z}
else
E,,
end if
end for
end for

: Step 4: Similarity Calculation

: Df «0,D7 « 0

: for each €att; in Fu do

df < CalculateSimilarity(E, 41, )

d; < CalculateSimilarity(E,,, eqtt;)

D < NormalizeDistribution(d;")

D; <+ NormalizeDistribution(d; )

: end for

: Step 5: Iterative Attribute Selection

: Eapp <0

: repeat

1 < arg min (ﬁ -JSD(D;F, D)
+(1 — B) - RedundancyPenalty ( Eo¢¢[i], Eatt)>

37: Eatt < Eatt U {Eutt [Z}} )
38: until SelectionCriteriaMet(F ;)
39: return F,

O XN R

RO M) = s s s s s e e = e
S e A T A =

— Ev_is U Fyis [Z}

LW W W W W W KN NN DN N NN

%)
3

improve the detection of unknown objects while preserv-
ing the model’s capability for zero-shot detection. The al-
gorithm operates in four key steps to achieve an effective
balance between detecting unknown objects and accurately



Algorithm 2 Hybrid Attribute-Uncertainty Fusion (HAUF)
Inference

Require: e,;,: Visual embedding, h.: Class scoring
function, E’att: Attribute embeddings, Pc: Known
class confidence scores, v: Number of top attribute
scores, k: Number of known classes

Ensure: P,: Out-of-distribution probability

1: Step 1: Compute attribute-based scores

RS hcls(evis»Eatt)

3: sy < Top-7 scores from s

4: Step 2: Calculate foreground probability P,

50 Py < 2 3 softmax(s,) - 5,

6: Step 3: Compute uncertainty probability P,

72 Pun 3 2. (—prlog(pr) — (1 — pr) log(1 — p))
8: Step 4: Compute unknown object probability P,
9: Py < 5(Py+ Puyn) - (1 — max(Pc))

10: return P,

classifying known categories. Step 1 computes attribute-
based scores. The top ~ attribute scores, s.,, are then se-
lected to focus on the most relevant features for distin-
guishing unknown objects. Step 2 calculates the foreground
probability, P,, which measures the likelihood of an object
being distinguishable from the background. This probabil-
ity is computed using a weighted average of the top ~ at-
tribute scores, scaled by their softmax values. Step 3 com-
putes the uncertainty probability, P,,, which assesses the
model’s confusion regarding the current object’s classifica-
tion relative to known categories. Step 4 combines both
probabilities, P, and P,,,, to compute the final unknown ob-
ject probability, P,. This probability is further modulated
by 1 — max(P¢), which reduces the likelihood of misclas-
sifying a known object as unknown if the model has high
confidence in a known class.

F. Incremental learning analysis

The qualitative results of our incremental learning anal-
ysis are illustrated in Fig. 7. The primary objective of incre-
mental learning is to enable detectors to function effectively
in open-world scenarios. Specifically, the goal of OWOD
is to empower detectors to actively discover objects of in-
terest during the inference stage and iteratively refine their
detection capabilities through annotator-assisted incremen-
tal training. By continual fine-tuning, the detector incre-
mentally acquires the ability to recognize new categories,
meeting the practical demands of open-world applications.

In the unknown object discovery phase, both the recall
rate and detection precision for unknown objects are crit-
ical metrics. These indicators directly influence the effi-
ciency of annotators and significantly impact the outcomes
of subsequent incremental learning stages. Compared to our
OW-0OVD, detection methods relying on Segment Anything

Model (SAM) exhibit subpar performance in detecting un-
known objects. For instance, the KTCN erroneously seg-
ments the hand and nose of a teddy bear as separate objects,
while the SGROD method generates multiple redundant
predictions for the ground. Such errors impose unnecessary
burdens on annotators, reducing efficiency. In subsequent
tasks, OW-OVD demonstrates superior accuracy in detect-
ing known objects, outperforming KTCN and SGROD by a
significant margin. Furthermore, OW-OVD shows notable
advantages in the recall of unknown objects. For example,
while MEPU fails to recall the plate on the table and SKDF
misses the bottle, OW-OVD not only successfully recalls
these objects but also correctly classifies them as known
categories in the subsequent incremental learning stages. In
contrast, MEPU and SKDF exhibit clear limitations in these
aspects. Overall, OW-OVD outperforms other methods in
both the precision of known object detection and the recall
of unknown objects. This superiority not only reduces the
workload of annotators but also significantly enhances the
applicability of incremental learning in open-world scenar-
ios, providing robust support for subsequent tasks.



Figure 7. Incremental learning analysis. This image presents a comprehensive evaluation of incremental learning performance, with
visualizations systematically arranged from top to bottom for the methods KTCN, SGROD, MEPU, and SKDF. Each row contains four
images: the first two display the outcomes from other SOTA methods, while the latter two represent our OW-OVD. Specifically, the first
column illustrates the performance of these methods on the test set after the completion of training for Task 1. The second column, on the
other hand, demonstrates the results after training has been completed for Task 4, reflecting their effectiveness at later stages of incremental
learning. The third and fourth columns are dedicated to showcasing ours OW-OVD. These columns provide a direct comparison of our
method’s performance on the test set following the completion of training for Task 1 and Task 4, respectively. To ensure clarity and focus in
the presentation, only predictions for unknown categories are visualized for Task 1, while for Task 4, we emphasize predictions for known
categories, aligning with the progression of incremental learning tasks. Additionally, the images corresponding to the KTCN method are
drawn from the M-OWODB test set, whereas the results for other methods are obtained from the S-OWODB test set.



	空白页面



