
DRAWER: Digital Reconstruction and Articulation With Environment Realism

Supplementary Material

A. Additional Experiment Results
A.1. Interactable 3D reconstruction
In this section, we will show more results of our interactable
3D reconstructions. For more video results, please refer to
our website in the supplementary material.

DRAWER in more scene types: DRAWER is not limited
to kitchens; instead, it generalizes across various scenes. Fig.
7 demonstrates the performance of DRAWER when applied
to office, bedroom, and bathroom.

Articulation motion simulation: Here we show more
qualitative results on the simulated motions of ours and Klin-
gAI1 in Fig. 3 and 2D dense pixel trajectories comparison
between ours and the GT trajectories in Fig. 4. In Fig. 3 we
can observe that KlingAI fails to generate accurate articula-
tion simulations despite using manual segmentation masks
and motions as input. DRAWER could generate realistic
and correct articulation results based on the underlying 3D
geometry. In Fig. 4, we show the comparisons between our
predicted articulation motion trajectories and the GT trajec-
tories. The opening speed of our predicted trajectories is
aligned with the GT trajectories. The dense blue points are
the GT 2D dense pixel trajectories. The dense red points are
the predicted 2D dense pixel trajectories with our approach.
We can observe that our predicted trajectories match with
GT trajectories very well, which proves the accuracy of our
articulation estimation.

Articulation estimation of objects: Here we show more
qualitative results on the estimation of articulation objects.
From Fig. 5, we can observe that our approach is more ro-
bust and achieves higher accuracy. By grounding predictions
in the underlying 3D, we further improve the precision of
estimated rotation axes.

Articulation estimation of complete scenes: We pro-
vide more qualitative comparison results of the full pipeline
evaluation. We compare DRAWER with recent methods
URDFormer [1] and Digital Cousin [2] on multiple captured
scenes. We show the interactable 3D reconstruction in Fig. 1.
To avoid clutter in visualization, we randomly select a subset
of drawers/cabinets to open. It shows that our approach could
accurately maintain exceptionally high visual and geometric
fidelity.

1https://www.klingai.com/

A.2. Gaming
Unreal setup details: We demonstrate the utility of envi-
ronments created with DRAWER for gaming applications
using Unreal Engine (UE) [3]. To build an interactive game
environment, we adopt the Luma Unreal Engine Plugin [9]
for real-time Gaussian rendering, and use the SDF-extracted
mesh for the collision model. For articulated objects, which
require setting up the articulation in the game engine, we
leverage the physical constraint component in Unreal, which
could constrain the linear limits for objects with prismatic
joints and angular limits for objects with revolute joints.
For the collision model approximation, we adopt convex
decomposition for rigid objects and use a higher-resolution
collision model based on triangle mesh for the background
scene mesh. In the interactive game, the player can shoot
yellow balls with the gun and hit the surfaces and objects in
the scene. When the player presses some specific keys, they
can push or pull the cabinet/drawer doors in the direction
they’re aiming, based on where their crosshair is pointing.

Gaming demos: In Fig. 6, we demonstrate our interac-
tive game in Unreal Engine with game features including
shooting rigid objects segmented from the scene and opening
cabinet and drawer doors. We show the comparison before
and after the interaction with the scene. It could be observed
that our interactive game can support multiple physical in-
teraction types and maintaining the rendering quality at the
same time.

A.3. Real-to-Sim-to-Real
Here we demonstrate more examples of robot learning in
a real-to-sim-to-real loop. In Fig. 2, we showcase how the
robot learns to open a cabinet door with the revolute joint.
It uses the generated data from the simulation environment
to train a policy for opening the cabinet door. It then suc-
cessfully performs the same task in the real world in the
zero-shot transfer setting with no extra fine tuning.

B. Dual Representation Details
B.1. SDF field details
In our dual scene representation, we applied the neural
signed distance function (SDF) field to capture the fine-
grained geometry details in the 3D scene.

Our neural SDF fSDF
θ maps a 3D point x ∈ R3 and a view

direction d ∈ R2 to an RGB radiance c ∈ R3 and a signed
distance to the nearest surface s ∈ R: s, c = fSDF

θ (x,d).
Inside fSDF

θ , the signed distance s only depends on 3D point



Input URDFormer [1] Digital Cousin [2] Ours

Figure 1. More Qualitative Results on Interactable 3D Reconstruction: We compare DRAWER’s reconstruction with [1, 2] which uses
multiple images as input and selects the best output. DRAWER achieves realistic, well-aligned results, while [1, 2] show misalignment
and lack realism. The left-most input images are reference images of the kitchens. To compare the performance of each method in a fully
automated pipeline, we use the automatically generated bounding boxes in URDFormer [1] for comparison. To avoid clutter in visualization,
we randomly select a subset of drawers/cabinets to open.

Initial pose Grasp handle Half open Fully open
Figure 2. More Results on Real-to-Sim-to-Real. Here we showcase the robot opens the cabinet door with the revolute joint in a zero-shot
transfer setting. DRAWER allows us to learn training robotic controllers using a real-to-sim-to-real loop. The inset images indicate the
simulated data generation process.

x, and the RGB radiance c depends on 3D point x ∈ R3 and
view direction d ∈ R2.

Following BakedSDF [20], we model the volume density
σ as σ(x) = αΨβ(s), where Ψβ is a cumulative distribu-



Original Closed Cabinet Ours – Half Open Ours – Fully Open KlingAI – Half Open KlingAI – Fully Open

Figure 3. More Qualitative Results on Articulation Simulation: Here we show more results of the comparisons between our approach
and KlingAI on the articulation simulation. Our method achieves realistic, accurate articulation, while KlingAI fails despite using manual
segmentation masks and motions.

Figure 4. Qualitative Results on Articulation Motion Simulation: Here we show the comparisons between our predicted articulation
motion trajectories and the GT trajectories. The opening speed of our predicted trajectories is aligned with the GT trajectories. The dense
blue points are the GT 2D dense pixel trajectories and the dense red ones are predicted by DRAWER. We can observe that our predicted
trajectories match with GT trajectories very well, which proves the accuracy of our articulation estimation.



3DOI [12] Ours 3DOI [12] Ours

Figure 5. More Results on Articulation Estimation: We visualize the estimated revolute axes and articulated object masks produced by
3DOI [12] and DRAWER, demonstrating that DRAWER achieves more precise articulation estimation due to its underlying 3D geometry.

tion function of a zero-mean Laplace distribution with an
annealing β in training. With volume rendering [10], our
SDF field can render the color C of a single pixel along a
ray r(t) = o + td with ray origin o and direction d based
on a series of points {ti}, densities {σi} and colors {ci}:
C(r) =

∑
i Tiαici, where Ti = exp

(
−
∑i−1

j=1 σjδj

)
,

αi = (1− exp(−σiδi)) and δi = ti − ti−1.

We minimize a loss Lrgb =
∑

r∥Cgt(r)−C(r)∥22 between
the ground truth color Cgt and rendering color C. We also
apply Eikonal loss [5] Leik = (∥∇xs∥− 1)2 and appearance
decomposition in Ref-NeRF [17] as well for better geometry
regularization.

Based on the modeling volume density, we could not only
render color C from volume rendering, but also render
the normal N(r) =

∑
i Tiαini and the depth D(r) =∑

i Tiαiti as well, where ni = ∇xs/∥∇xs∥. Inspired by
MonoSDF [22], we also use the off-the-shelf model [4]
to predict 2D monocular normal and depth priors, which
guide our rendering normal N(r) and D(r) to help the SDF
Field learn better geometry with losses Lnormal = ∥N(r)−
Nmono(r)∥22 and Ldepth =

∑
r ∥(aD(r) + b)−Dmono(r)∥22,

where a and b are the scale and shift that aligns the two
distribution [13].

We jointly optimize the SDF Field parameters by mini-
mizing the following loss: LSDF

total = Lrgb + λnormalLnormal +
λdepthLdepth + λeikLeik.

We implement our SDF field based on SDFStudio [21] with
the multi-resolution grid [11], which speeds up the training
than the original BakedSDF MLP-based implementation. We
train our SDF for 250k iterations for 4 hours in an A6000
GPU.

B.2. Gaussian splats details

We propose anchoring the Gaussians around the zero level-
set of the neural SDF field. Since repeatedly querying the
learned SDF is computationally expensive, we instead ex-
tract a high-resolution mesh from the SDF and anchor Gaus-
sians to it. Fig. 8 provides a high-level overview to the dual
scene representation.

For every GS point pi, we need to parameterize its mean µi,
scale Si, orientation Ri, opacity αi, and colors radiance ci
encoded using spherical harmonics. For each point p, we
define the Gaussian as G(p) = e−

1
2 (p−µ)TΣ−1(p−µ), which

is multiplied by opacity α in blending process. We define
the covariance as Σ = RSSTRT . Finally, the rendering
C =

∑N
i=1 ciα

′
i

∏i−1
j=1(1−α′

j), where α′
j is the accumulated

opacity.



Opening Doors Moving Objects
before after before after

open the revolute drawer shoot the white kettle

open the revolute drawer shoot the blue bottle

open the revolute drawer shoot the white stapler

open the prismatic drawer shoot the dish soap bottle

open the prismatic drawer shoot the blue roll of bags
Figure 6. DRAWER in Unreal Engine. We demonstrate our interactive game in Unreal Engine with game features including shooting rigid
objects segmented from the scene and opening cabinet and drawer doors. We zoom in on some images for better visualization. Here we show
the comparison before and after the interaction with the scene. The player can shoot yellow balls with the gun. When the player presses a
key, they can push or pull the cabinet/drawer doors in the direction they’re aiming, based on where their crosshair is pointing.

To establish a local coordinate system for each mesh face
triangle, we first map each GS point pi to its corresponding

face fk via:

h : pi 7→ fk



Before After

Figure 7. Results of DRAWER on more environments. DRAWER
can generalize across various scenes, including the office, bedroom,
and bathroom.

Each face fk is defined by its vertices vk,0,vk,1,vk,2. We
compute the normalized edge direction vectors:

ek,0 = normalized(vk,1 − vk,0)

ek,1 = normalized(vk,2 − vk,1)

ek,2 = normalized(vk,0 − vk,2)

The face normal nk is:

nk = ek,0 × ek,1

The local coordinate axes are:

xk = ek,0, yk = nk × ek,0, zk = nk

This local frame (xk,yk, zk) ensures a consistent reference
for operations like mapping points and defining orientations
within the mesh.

In our dual scene representation, we parameterize the Gaus-
sian splats with the following parameters for each GS point:
xi, yi, zi for µi, si,x, si,y, si,z for Si, and αi, ϕi, θi for Ri.
We maintain the parameterization of opacity αi and colors
radiance ci unchanged. Next, we will elaborate details on
this.

Parameterization of means: To parameterize the mean
positions µi of the Gaussian splats, we anchor each mean
µi to its corresponding mesh face fk by expressing it in the
face’s local coordinate system. Specifically, we decompose
µi into components along the face’s local axes:

µi = xixk + yiyk + zizk,

where xk, yk, and zk are the local coordinate axes of the
face fk. xk and yk lie in the plane of the face. zk is the
normal vector perpendicular to the face. xi, yi, and zi are
scalar parameters representing the projection lengths of µi

along the respective axes.

To ensure that the projection of the mean vector µi lies
within the face triangle fk, we begin by calculating its
barycentric coordinates. The projection is given by xixk +
yiyk, where xi and yi are unconstrained coordinates, and
xk and yk are basis vectors associated with the triangle. Us-
ing the triangle’s vertex positions vk,0, vk,1, and vk,2, we
compute the barycentric coordinates λi,0, λi,1, and λi,2 of
the projected mean µi. However, since xi and yi are not con-
strained, these barycentric coordinates may not fall within
the interval (0, 1), meaning the projection could lie outside
the triangle. To map any such point back onto the triangle
(specifically, onto its edges), we adjust the barycentric co-
ordinates by clipping each λi,m to the range [0, 1] and then
normalizing them so they sum to 1:

λreg
i,m =

fclip(λi,m, 0, 1)∑2
m=0 fclip(λi,m, 0, 1)

Where fclip(x, a, b) limits the value of x to be within the
range of [a, b]. With these regularized barycentric coordi-
nates λreg

i,m, we can compute the constrained coordinates xreg
i

and yreg
i . This ensures that the adjusted projection of µi now

lies within the face triangle fk.

To constrain the z-direction component of the mean vector
µi, we apply a clipping operation to zi based on the scaled
radius eαrk:

zreg
i = fclip (zi,−eαrk, eαrk)

In these expressions: eα is a predefined constant. rk is the
inradii of face triangle fk. Next, we compute the regularized
mean vector µreg

i by combining the constrained components:

clip(µi) = µreg
i = xreg

i xk + yreg
i yk + zreg

i zk

However, the clipping function inherently stops gradients
during back-propagation, preventing gradients from flowing
back to the underlying parameters. To circumvent this issue
and ensure proper gradient propagation, we utilize the stop-
gradient operator sg(·), which halts gradients during the
forward pass. We define an adjusted mean vector µo

i using
straight-through estimator as follows:

µo
i = sg (clip(µi)) + µi − sg (µi)

This formulation ensures that the forward pass uses the reg-
ularized mean clip(µi), while the gradients during back-
propagation are computed with respect to the original mean



Figure 8. Illustration of our dual scene representation. Our dual scene representation is based on SDF reconstruction and Gaussian
Splatting. We anchor gaussian splats on each triangle on the reconstructed mesh extracted from SDF.

Figure 9. Failure cases of DRAWER. DRAWER might occasionally fail due to catastrophic errors in foundation models. For example,
when 3DOI predicts the wrong axes and GPT-4o fails to recognize the correct face of cabinet doors.

µi. Finally, we use µo
i in the GS rendering process to main-

tain the desired constraints without impeding gradient flow.

Parameterization of scales: To parameterize the scales, we
start by defining Si = (Si,x, Si,y, Si,z), where each com-
ponent is an exponential function of learnable parameters
si,x, si,y, si,z:

Si,· = exp(si,·)

Here, si,x, si,y, si,z are the parameters that the model learns
during training. To ensure that these scales remain within
desired limits, we apply a clipping operation. For the x and
y components, the scales are clipped as follows:

Sreg
i,· = fclip (Si,·, 0, sαrk) , for Si,x, Si,y

For the z component, we introduce an additional scaling
factor sβ in the clipping operation:

Sreg
i,z = fclip (Si,z, 0, sαsβrk)

In these expressions: sα and sβ are predefined scaling con-
stants. rk is the inradii of face triangle fk. We define Sreg

i

as:
clip(Si) = Sreg

i =
(
Sreg
i,x, S

reg
i,y, S

reg
i,z

)
With straight-through estimator, we ensure proper gradient
propagation by:

So
i = sg (clip(Si)) + Si − sg (Si)

Parameterization of orientations: To parameterize the ori-
entations while allowing limited rotation around the face
normal direction nk, we define the rotation matrix Ri as
follows:

Ri = stack(xk,yk, zk)×rot axis angle
(
vrot
i , ϕi

)
×rotz(θi)

where

vrot
i =

sin(αi)
cos(αi)

0


Here, αi, ϕi, and θi are learnable parameters that con-
trol the orientation. stack(xk,yk, zk) constructs a ma-
trix from the local coordinate axes of face triangle fk.



Figure 10. Robust perception via 3D fusion. We show the robustness of our perception here. Grounded SAM can not guarantee the correct
detection of the complete mask for every door in every frame in the video. However, with the underlying 3D geometry, we could fuse masks
in 3D and obtain 3d consistent instance mask.

rot axis angle(vrot
i , ϕ) represents the rotation matrix for ro-

tating around axis vrot
i by angle ϕ. rotz(θi) is the rotation

matrix for rotating around the z-axis by angle θi.

We will explain the rotation components then. Firstly, we
start with an initial alignment with face triangle with the ma-
trix stack(xk,yk, zk). It aligns the coordinate system with
the local axes of the face triangle fk. This sets the foundation
for further rotations.

Secondly, we rotate around an axis in the xy-plane. We define
an axis vrot

i in the xy-plane using αi. We rotate around this
axis by angle ϕi using rot axis angle(vi, ϕi). This allows
for limited tilting away from the face normal nk.

Finally, we rotate around the z-axis. We apply rotz(θi) to
capture any rotation within the plane perpendicular to the
z-axis.

To limit the tilting (leaning) of the orientation away from the
z-axis, we constrain the angle ϕi:

clip(ϕi) = ϕreg
i = fclip(ϕi, 0, ϕ

max)

This ensures that ϕi stays within the range [0, ϕmax], prevent-
ing excessive tilting.

With straight-through estimator, we ensure proper gradient
propagation by:

ϕo
i = sg (clip(ϕi) + ϕi − sg (ϕi)

Adaptive density control: In the process of adaptive den-
sity control, which includes splitting, duplicating, and culling
of Gaussian points, we adjust the mapping of GS points to
mesh faces. Each GS point pi is associated with a mesh face
fk through the mapping function

h : pi 7→ fk.

By maintaining this mapping relationship, we ensure that
even when multiple GS points are associated with a sin-
gle mesh face, they remain well-integrated within the mesh
structure.

When duplicating GS points during adaptive density control,
we copy all the parameters from the original GS point to the
duplicates. This straightforward replication ensures consis-
tency and maintains the spatial and geometric properties of
the points.

Splitting GS points requires more careful handling to ensure
that the new points are properly positioned and scaled. The
steps involved are:

1) We copy rotation parameters and z-component directly:
we directly copy the rotation parameters αi, ϕi, θi, and the
z-component zi from the original GS point to the new split
points.

2) We shrink the scales of the GS points by a factor of
ssrk = 1.6. This is done by adjusting the exponentiated
scales:

exp
(
snew
i,·

)
=

1

ssrk × exp (si,·) .

3) We determine new means for split points. We sample the
new mean positions µnew

i for the split GS points within a
radius rmax

i . The radius rmax
i is calculated as the minimum

of:

1. the smallest of the original x- and y-scale components
min (Si,x, Si,y)

2. the minimum distance from the projected point xixk +
yiyk to the edges of the face triangle fk.

This ensures that the new means are not only within the
original GS point’s scale but also confined within the face
triangle they belong to. By sampling within this radius, we



maintain spatial coherence and prevent the new GS points
from overlapping or extending beyond the boundaries of fk.

Training details: For training loss: in each iteration, we
render colors C, accumulations A, and depths D for each
image frame. Given GT colors Cgt and mesh projected depth
Dmesh , we have: Lrgb = ∥Cgt −C∥22 , Laccu = ∥A − 1∥22,
and Ldepth = ∥Dmesh − D∥22. Totally, the loss is LGS

total =
Lrgb + λaccuLaccu + λdepthLdepth. We train our GS for 30k
iterations following [6]. Our implementation is based on
NeRFStudio [15].

C. Articulation Details
C.1. Scene decomposition details
Articulated object decomposition: Given a set of posed
images, we first adopt Grounded SAM [7, 8, 14] to segment
all objects of interest across all frames. Here, Grounded
SAM takes natural language as input and outputs corre-
sponding image masks on each input image frame. We select
some related words including drawer door, cabinet
door, fridge door etc. as input.

Due to viewpoint variations and specular reflections, objects
are not always fully visible, resulting in significant variations
in mask quality. To address this issue and ensure reliable
mask estimations across frames, we employ a multi-step
approach involving mask projection, fusion, and filtering.

For each input image, we use Grounded SAM to generate
several related masks. These masks are then projected onto
the 3D scene mesh obtained in SDF field reconstruction,
resulting in segmented 3D partial meshes corresponding to
each mask. Within each partial 3D mesh, we extract the
indices of the faces covered by the projected mask.

We construct a graph representing the entire mesh, where
nodes represent the faces of the mesh, edges connect adja-
cent faces, and edge weights are determined by the frequency
with which two connected faces appear together in the same
segmented 3D partial mesh across all masks. This frequency
reflects how often the two faces are co-projected from differ-
ent masks.

Using the Louvain algorithm [16, 23], we detect communi-
ties (clusters) at various clustering resolutions. Each cluster
corresponds to a group of faces that frequently appear to-
gether in the projected masks, indicating they belong to the
same object or surface region. Finally, we obtain the corre-
sponding 3D partial mesh by aggregating the faces within
each cluster.

For each obtained 3D partial mesh cluster, we project it back
into every image frame to generate a 2D mask. These pro-
jected masks are compared with the original masks generated

by Grounded SAM using the Intersection over Union (IoU)
metric. If no Grounded SAM mask in any image frame has
an IoU exceeding a predefined threshold with the projected
mask, the corresponding 3D partial mesh cluster is discarded.
This ensures that only clusters corresponding to reliable and
consistent object masks across frames are retained.

Leveraging the advanced visual grounding capabilities of
Vision-Language Models (VLMs) [19], we employ GPT4o
to assess the quality of the remaining masks. The evalu-
ation criteria include: 1) Object Type: Ensuring the mask
corresponds to the desired object type. 2) Masked Region
Completeness: Ensuring the object within the mask is com-
plete and not partially occluded. 3) Singularity of Object:
Confirming that the mask covers a single object rather than
multiple instances (e.g., avoiding masks that cover multiple
doors when only one is desired). Masks that do not meet
these criteria are discarded, enhancing the overall quality.

Filtered masks are projected onto the 3D scene mesh, and
IoU values between different 3D segmented meshes are com-
puted. Duplicated segmented articulated objects (i.e., mul-
tiple meshes representing the same object) are identified
through high IoU values and removed, ensuring that each
object is uniquely represented.

For each remaining segmented mesh, we project it into each
image frame to obtain a projected mask. From this mask,
we derive point prompts indicating key positions on the
object. Using these point prompts, the Segment Anything
Model (SAM) [7] is employed to re-segment the objects in
the images. This step refines the segmentation, leveraging
SAM’s capabilities to produce more precise and consistent
masks across frames.

This process yields, for each object i, its high-quality 2D
masks Mi,j in each image j, and its partial 3D geometry in
either mesh form Mobj

i = (Vi,Fi) or SDF.

Rigid object decomposition: For rigid object decom-
position, we follow a method similar to that described in
[18]. Firstly, we begin by locating the rigid object in the
scene either by Grounded SAM from text prompts including
Bottle, Bowl, Cup etc. or through user clicks. Once
the object is located in one view, we propagate the masks
across views to ensure consistent segmentation of the ob-
ject throughout different perspectives. We then extract the
corresponding 3D bounding box of the rigid object. Finally,
we could adjust the underlying SDF field according to the
bounding box location. This involves modifying the SDF
values within the bounding box to isolate the object from
the rest of the scene. We can then extract the rigid object
with marching cubes in the SDF field. By adjusting the SDF
field instead of direct mesh segmentation, the hole below the



object is automatically filled.

C.2. Physical reasoning details

Once we identify all interactable objects, the next step is to
estimate their physics-related attributes to effectively model
and simulate their physical dynamics. Specifically, we aim
to determine the articulation types and axes of articulated
objects. To achieve this, we adopt a two-pronged approach.
The first prong leverages a specialized vision foundation
model 3DOI [12] to predict object hinges and affordances.
This model excels in identifying articulation types and affor-
dance maps but may produce less accurate object masks and
revolute axes. To enhance the overall accuracy, we integrate
the predictions of 3DOI with our reconstructed 3D geometry
and high-quality, filtered articulated object masks.

Here we elaborate on the details of how we integrate the pre-
dictions of 3DOI [12] with our reconstructed 3D geometry.
We first use the filtered articulated object masks obtained in
Section C.1 and sample a point at the center of each mask.
This point serves as input to the 3DOI model. The 3DOI
model processes the input point and predicts the articulated
object mask, the articulation type (e.g., revolute or prismatic
joint), the revolute axis, if applicable, and the affordance
map, indicating where forces are likely to be applied. For
more details on the 3DOI model, please refer to [12].

3DOI provides robust predictions for articulation types and
affordance maps but may inaccurately predict object masks
and revolute axes. To leverage the model’s strengths, we
combine its predictions with our accurate 3D geometry and
filtered object masks. We focus on the affordance map from
the 3DOI predictions, which is a 2D matrix matching the
input image’s dimensions. This map assigns higher values to
pixels where force application is more probable. We assume
the force application point as the pixel within our articulated
object mask that holds the maximum value in the affordance
map. This pixel represents the position where we are most
likely to apply force to interact with the object.

We start with computing the minimum 3D oriented bounding
box for the articulated object’s geometry. For objects like
doors, which are thin in one dimension, the bounding box
reflects this by being thin along one axis. We then designate
the thin direction as the z-axis. The other two dimensions
become the x-axis and y-axis. We then calculate the posi-
tion of the force application point within the object’s local
coordinate system. The coordinates (x, y) are normalized
to the range [0, 1], where smaller values of x and y indi-
cate positions closer to the left and top edges of the object,
respectively.

Next, we perform the articulation type inference based on the
coordinate. If the position of the point is at the left (x < 0.25)

or right (x > 0.75) of the door, the object is likely to have
a revolute joint that opens from left to right or right to left.
If the force point is near the center (0.25 ≤ x ≤ 0.75), the
object could have either a revolute or prismatic joint. In this
situation, if the point is not near the top or bottom of the
drawer door (0.25 ≤ y ≤ 0.75), it’s probably a prismatic
joint (e.g., a drawer sliding out). If the point is located at
center top (0.25 ≤ x ≤ 0.75 and y < 0.25) or center bottom
(0.25 ≤ x ≤ 0.75 and y > 0.75), then further analysis is
needed. In this case, where the articulation type is ambiguous
based on position alone, we rely on the articulation type
prediction from the 3DOI model. For example, if the point
is at the center top or bottom and 3DOI predicts a revolute
joint, it suggests the object opens by rotating from top to
bottom or vice versa.

Once the articulation type is inferred, for revolute joints,
we still need to predict the revolute axis. We leverage our
high-quality 3D geometry to accurately predict the revolute
axis. This is done by identifying the corresponding edge of
the object mask that aligns with the axis of rotation. We then
project this edge into 3D space to obtain the 3D revolute
axis.

To further enhance our predictions, we adopt GPT4o In-
ference. We provide GPT4o with images of the masked
articulated objects. And GPT4o is queried for articulation
information, including type and possible rotation directions.
If GPT4o’s predictions differ from our inferences based on
3DOI predictions, we consult another VLM. This additional
VLM acts as an arbitrator to resolve discrepancies and de-
termine the final articulation type. Based on the confirmed
articulation type and rotation direction, we use the corre-
sponding edge of our object mask to define the rotation axis.
This axis is then utilized in modeling and simulating the
articulated object’s physical dynamics.

D. Evaluation details

Articulation Understanding Comparison In the com-
parison with URDFormer [1] and Digital Cousin [2], the
results of URDFormer and Digital Cousin are all in differ-
ent coordinates. When we calculate the correct perception
result, we first try to match the perception results with the
GT layout. Specifically, we first divide the GT layout and the
prediction layout into upper and lower parts. The upper parts
are all cabinet doors which are fixed, attached to the wall,
and hanging in the air. The lower parts are all cabinet doors
which are placed on the ground. For each part of the layout,
we assign a x-y coordinate for each door. To handle differ-
ences in scale between layouts, we normalize x-coordinates
to a (0-1) range while preserving relative positions. We then
conduct a pattern-preserving matching process that treats
components at the same x-coordinate as a structural pattern



unit. We only consider a match valid when both GT and
prediction have identical pattern structures (same number of
components) at corresponding x-positions. This strict match-
ing approach ensures that vertically-aligned components are
matched as complete units, preserving the structural integrity
of cabinet arrangements. Our evaluation metrics include to-
tal predictions, accurate predictions (number of correctly
matched components), prediction recall (percentage of GT
components matched), and prediction accuracy (percentage
of predictions matching GT).

Articulation Inference Comparison In the comparison
with 3DOI [12], for a fair comparison, we only compare on
those cabinet doors which are recognized by our perception
method. The 3DOI model takes a 2d point prompt as input,
and we provide the 3DOI model with that in comparison.

E. Failure cases mode
While DRAWER is generally robust to perception errors
(See Fig. 10 for illustration), it occasionally fails due to
catastrophic errors in foundation models. Fig. 9 showcases
a few failure cases: (left) both 3DOI [64] and GPT-4o in-
correctly suggest the revolute joint is on the right, while the
ground truth hinge is on the left; (right) both Grounded SAM
[68] and GPT-4o misperceive the side of the cabinet as a
door.

References
[1] Zoey Chen, Aaron Walsman, Marius Memmel, Kaichun Mo,

Alex Fang, Karthikeya Vemuri, Alan Wu, Dieter Fox, and
Abhishek Gupta. Urdformer: A pipeline for constructing
articulated simulation environments from real-world images.
arXiv, 2024. 1, 2, 10

[2] Tianyuan Dai, Josiah Wong, Yunfan Jiang, Chen Wang, Cem
Gokmen, Ruohan Zhang, Jiajun Wu, and Li Fei-Fei. Acdc:
Automated creation of digital cousins for robust policy learn-
ing. arXiv, 2024. 1, 2, 10

[3] Epic Games. Unreal engine. 1
[4] Gonzalo Martin Garcia, Karim Abou Zeid, Christian Schmidt,

Daan de Geus, Alexander Hermans, and Bastian Leibe. Fine-
tuning image-conditional diffusion models is easier than you
think. arXiv, 2024. 4

[5] Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and
Yaron Lipman. Implicit geometric regularization for learning
shapes. arXiv, 2020. 4

[6] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and
George Drettakis. 3d gaussian splatting for real-time radiance
field rendering. TOG, 2023. 9

[7] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C Berg, Wan-Yen Lo, et al. Segment any-
thing. In ICCV, 2023. 9

[8] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao
Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun

Zhu, et al. Grounding dino: Marrying dino with grounded
pre-training for open-set object detection. arXiv, 2023. 9

[9] Luma AI. Luma unreal engine plugin. 1
[10] Nelson Max. Optical models for direct volume rendering.

TOG, 1995. 4
[11] Thomas Müller. tiny-cuda-nn, 2021. 4
[12] Shengyi Qian and David F Fouhey. Understanding 3d object

interaction from a single image. In ICCV, 2023. 4, 10, 11
[13] René Ranftl, Katrin Lasinger, David Hafner, Konrad

Schindler, and Vladlen Koltun. Towards robust monocular
depth estimation: Mixing datasets for zero-shot cross-dataset
transfer. 2020. 4

[14] Tianhe Ren, Shilong Liu, Ailing Zeng, Jing Lin, Kunchang Li,
He Cao, Jiayu Chen, Xinyu Huang, Yukang Chen, Feng Yan,
Zhaoyang Zeng, Hao Zhang, Feng Li, Jie Yang, Hongyang
Li, Qing Jiang, and Lei Zhang. Grounded sam: Assembling
open-world models for diverse visual tasks, 2024. 9

[15] Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li, Brent
Yi, Justin Kerr, Terrance Wang, Alexander Kristoffersen, Jake
Austin, Kamyar Salahi, et al. Nerfstudio: A modular frame-
work for neural radiance field development. in arXiv, 2023.
9

[16] Vincent A Traag, Ludo Waltman, and Nees Jan Van Eck. From
louvain to leiden: guaranteeing well-connected communities.
Scientific reports. 9

[17] Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler,
Jonathan T Barron, and Pratul P Srinivasan. Ref-nerf: Struc-
tured view-dependent appearance for neural radiance fields.
In 2022 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 5481–5490. IEEE, 2022. 4

[18] Hongchi Xia, Zhi-Hao Lin, Wei-Chiu Ma, and Shenlong
Wang. Video2game: Real-time interactive realistic and
browser-compatible environment from a single video. In
CVPR, 2024. 9

[19] Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan
Li, and Jianfeng Gao. Set-of-mark prompting unleashes ex-
traordinary visual grounding in gpt-4v. arXiv, 2023. 9

[20] Lior Yariv, Peter Hedman, Christian Reiser, Dor Verbin,
Pratul P Srinivasan, Richard Szeliski, Jonathan T Barron, and
Ben Mildenhall. Bakedsdf: Meshing neural sdfs for real-time
view synthesis. In SIGGRAPH Conference, 2023. 2

[21] Zehao Yu, Anpei Chen, Bozidar Antic, Songyou Peng, Apra-
tim Bhattacharyya, Michael Niemeyer, Siyu Tang, Torsten
Sattler, and Andreas Geiger. Sdfstudio: A unified framework
for surface reconstruction, 2022. 4

[22] Zehao Yu, Songyou Peng, Michael Niemeyer, Torsten Sattler,
and Andreas Geiger. Monosdf: Exploring monocular geo-
metric cues for neural implicit surface reconstruction. arXiv,
2022. 4

[23] Jicun Zhang, Jiyou Fei, Xueping Song, and Jiawei Feng. An
improved louvain algorithm for community detection. Mathe-
matical Problems in Engineering, 2021. 9


	Additional Experiment Results
	Interactable 3D reconstruction
	Gaming
	Real-to-Sim-to-Real

	Dual Representation Details
	SDF field details
	Gaussian splats details

	Articulation Details
	Scene decomposition details
	Physical reasoning details

	Evaluation details
	Failure cases mode

