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Supplementary Material

In this supplementary material, we provide the following
information to support the main paper:
A Projection geometry.
B Procrustes alignment.
C Additional details about RANSAC.
D Additional comparison of loss functions.
E Assumption on orthographic images.
F Directly matching DINO feature.
G Extra Qualitative Results.

A. Projection geometry
We provide details on how to find the projected pixel coor-
dinates of the 3D points in the ground image feature map
f(G) during the mapping to 3D step in Sec. 3.2 of the main
paper.
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Figure 1. Projecting a 3D point to a panoramic image. We use the
original image for visualization purposes. In practice, we find the
projected pixel coordinates in the extracted feature map.

We begin with the case where ground images are
panoramic. As shown in Fig. 1, a panorama represents the
surface of a sphere. Each pixel in a panorama is associated
with a spherical coordinate (ϕ, θ), where ϕ ∈ [−π, π] and
θ ∈ [−π

2 ,
π
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3D point Xn,m, where n is the index of the ground 2D point
in the created point set ξG and m is the index of the lifted
3D point, we compute its projected spherical coordinates
(ϕn,m, θn,m) using,
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Once we have (ϕn,m, θn,m), we can simply find its cor-

responding pixel coordinates (un,m, vn,m),

un,m =
ϕn,m + π

2π
W, (3)

vn,m =
π
2 − θn,m

π
H, (4)

where W and H are the width and height of the extracted
ground feature map f(G).

Figure 2. Perspective projection of a 3D point. We use the original
image for visualization purposes. In practice, we find the projected
pixel coordinates in the extracted feature map.

If the ground images follow a perspective projection, see
Fig. 2, the pixel coordinates (un,m, vn,m) of each 3D point
Xn,m = (xG

n , y
G
n , z

G
n,m) can be computed using the camera

intrinsics,
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xG
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where stride is the downscale factor between the input im-
age G and its extracted feature map f(G) and (u0, v0) de-
notes the amount of principal point offset in the feature map
f(G).

B. Procrustes alignment
As mentioned in Sec. 3.3 of the main paper, we use the Kab-
sch solver [5], also known as the orthogonal Procrustes al-
gorithm, to compute the relative pose between ground and
aerial 2D point sets ξG and ξA. Kabsch solver is common
for point cloud registration.

The Kabsch solver computes the optimal rotation matrix
that minimizes the root mean squared deviation between
two paired sets of points. The translation between the two
point sets is determined by calculating the shift between the



resulting two rotation-aligned point sets. This process is
inherently differentiable [2, 3], as the rotation is obtained
through the Singular Value Decomposition (SVD) of the
cross-correlation matrix between the two point sets.

As noted in Sec. 3.3, given the N ground and aerial 2D
points ξG and ξA and their pair-wise matching probability
D (of length of N2), we sample NS correspondences,

{DnS
} ∼ D, nS = 1, ..., NS , (7)

where nS is the sampled index in D. We denote the ground
and aerial points of those NS correspondences as ξGS and
ξAS . Then, the Kabsch solver computes the rotation (in our
case, yaw orientation o) between ξGS and ξAS in three steps.

First, ξGS and ξAS are translated such that their centroid
coincides with the origin of the coordinate system,

ξGtrans = ξGS − mean(ξGS ), ξAtrans = ξAS − mean(ξAS ), (8)

where ξGtrans and ξAtrans represent the translated ground and
aerial points, respectively, and mean(·) computes the mean
coordinate of the points in ξGS and ξAS . When computing
the mean, the matching probabilities {DnS

} are used as
weights [4], which means a point with a higher matching
probability contributes more to the mean coordinate.

Then, we compute a cross-covariance matrix H between
ξGtrans and ξAtrans as H = (ξAtrans)

T · ξGtrans.
Finally, we compute the SVD of H ,

U · S · V T = H, (9)

where U and V are orthogonal and S is diagonal. The 2×2
rotation matrix rot of the orientation o is then,

rot = U ·
[
1 0
0 determinant(U · V T )

]
· V T . (10)

Once the orientation is estimated, the translation tm
between ξGS and ξAS is computed as tm = mean(ξGS ) −
mean(ξAS ) · rotT .

C. Additional details about RANSAC
RANSAC is not used during training. When inference with
RANSAC, we conduct R = 100 iterations and use 2.5 m
as the threshold in Eq. 5 in the main paper. As shown in
Tab. 1, on the VIGOR same-area test set, RANSAC reduces
the mean localization error from 2.18 m to 1.95 m. With-
out RANSAC, our method achieves 9.26 FPS on an H100
GPU. As expected, RANSAC increases computation, and
inference with RANSAC has 0.32 FPS. If fast runtime is
required, our method can be used without RANSAC, and
it still surpasses the previous state-of-the-art in localization
accuracy. RANSAC is used to obtain the accurate pose es-
timation reported in the main paper (Tab. 1), whereas it is

omitted in the ablation study (Tab. 3) due to runtime con-
siderations. On the KITTI dataset, we did not observe an
overall performance improvement with RANSAC. There-
fore, we did not use RANSAC on KITTI.

VIGOR FPS Same-area Cross-area
Mean Median Mean Median

w/o. R. 9.26 2.18 1.18 2.74 1.52
w. R. 0.32 1.95 1.08 2.41 1.37

Table 1. Comparison of localization errors and runtime between
our model with (“w. R.”) and without RANSAC (“w/o. R.”) when
performing inference on the VIGOR test set with known orienta-
tion. Best in bold.

D. Additional comparison of loss functions

We use a Virtual Correspondence Error loss, LV CE ,
adapted from [1], to supervise the camera pose (main paper
Sec. 3.4). Here, we also compare it with other pose losses.

We tested a loss function that sums an L1 loss for lo-
calization and another L1 loss for orientation estimation,
denoted as LA, and an alternative, LB , which replaces the
L1 loss for localization with an L2 loss (i.e., minimizing
squared distance). As shown in Tab. 2, both LA and LB

performed worse than our LV CE . LV CE jointly considers
localization and orientation, potentially leading to a better
local optimum during training.

Error (m) LV CE LA LB

Mean 2.17 2.68 2.58
Median 1.18 1.38 1.37

Table 2. Loss comparison on VIGOR validation set with known
orientation. Best in bold.

E. Assumption on orthographic images

Our method assumes each pixel in the aerial image corre-
sponds to a vertical ray in 3D (main paper Sec. 3.1). How-
ever, existing cross-view localization datasets often violate
this assumption.

We do not explicitly address non-orthographic aerial im-
ages. Since the model is supervised using the camera pose,
or equivalently, the ground and aerial BEV point locations,
it must learn to assign matchable features to corresponding
ground and aerial points. During training, building facades
are sometimes visible in the aerial image, while at other
times only the rooftops are seen. As a result, the model
must learn to associate ground-view content (e.g., build-
ings) with both facades and roofs. This likely explains why,
in the aerial view, points on buildings in the ground view are



sometimes matched to roofs (main paper Fig. 3c) and other
times to facades (main paper Fig. 3a).

On the other hand, since our point set is relatively sparse
and the point descriptors are constructed from deep features,
these descriptors likely summarize information from local
neighborhoods. It is also possible that the descriptors for
roof or facade points capture more global semantic informa-
tion, e.g., identifying a region as part of a building, rather
than strictly encoding the visual appearance of the projected
location in the input images.

F. Directly matching DINO feature
As mentioned in the main paper, we use pre-trained DI-
NOv2 features [6]. We tried directly matching DINO fea-
tures between ground and aerial images. However, this ap-
proach did not produce visually reasonable matches, see
Fig. 3. Therefore, using our model on top of the DINO
features is essential.

The DINOv2 paper [6] demonstrated impressive re-
sults by directly matching features extracted from images
and sketches. However, ground-to-aerial cross-view image
matching is significantly more challenging due to factors
such as the lack of clear separation between foreground and
background, the presence of dynamic and unmatchable ob-
jects, the repetition of structures like buildings and trees,
and the substantial differences in perspective, scale, and
scene coverage between the two views.

G. Extra qualitative results
Finally, in addition to the qualitative results presented in
Sec. 4.4 of the main paper, we provide more examples in
Fig. 4 and 5. In Fig. 4 (a)-(d), we include the same samples
as in Fig. 3, and our method produces reasonable matches.
In Fig. 5 (i)-(l), we show predictions with unknown orien-
tation.
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Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez,
Daniel HAZIZA, Francisco Massa, Alaaeldin El-Nouby,
Mido Assran, Nicolas Ballas, Wojciech Galuba, Russell
Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael
Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Herve Je-
gou, Julien Mairal, Patrick Labatut, Armand Joulin, and Piotr
Bojanowski. DINOv2: Learning robust visual features with-
out supervision. Transactions on Machine Learning Research,
2024. 3, 4



(a) (b)

(c) (d)

Figure 3. Directly matching DINOv2 features [6] of the ground and aerial images. We show the 20 matches with the highest similarity
scores.
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Figure 4. Fine-grained feature matching results on VIGOR with known orientation. We show the 20 matches with the highest similarity
scores. We find the 3D points using the selected height in the last pooling to BEV step and then project those points to the ground image.
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Figure 5. Fine-grained feature matching results on VIGOR with known and unknown orientation. We show the 20 matches with the highest
similarity scores. We find the 3D points using the selected height in the last pooling to BEV step and then project those points to the ground
image.
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