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Figure 1. Visualization comparison of different labels on OPV2V train split.

1. Label visualization comparison of different methods on two datasets.
As shown in the Fig. 1, we present a visual comparison of the automatic labeling results for different unsupervised methods
on both the simulated dataset OPV2V [3] (top) and the real-world dataset V2V4Real [4] (bottom). For ease of observation,
we have removed the ground point cloud from the original point cloud scene. In the simulated dataset OPV2V, within
the areas under multi-agent synchronous observation, both existing unsupervised approaches and our approach can achieve
commendable results in automatic labeling. However, objects located at the edge of the collaborative observation area are
still affected by occlusion and the sparsity of point clouds, leading to incomplete structures in the point cloud descriptions.
This phenomenon can degrade the performance of traditional unsupervised clustering-based algorithms. For instance, in area
1⃝, due to the limited range of the point clouds output by clustering, traditional methods may discard the fitted bounding

boxes for this part; in areas 2⃝ and 5⃝, the incomplete structures resulting from clustering lead to poor bounding box fitting
effects. Additionally, traditional fitting-based methods only consider the dimensions of the fitting box for selecting bounding
boxes, which can lead to incorrect labels,e.g., in many areas labeled as 3⃝ and 4⃝.

2. Additional Study on Robustness to localization noise.
Due to localization errors and communication delays, there is noise in real-world multi-agent collaborative observation. To
further investigate the impact of this issue on our method, we follow the localization noise setting in Where2comm [1]
(Gaussian noise with a mean of 0m and a standard deviation of 0m-0.6m) and conduct experiments on OPV2V dataset
to validate the robustness against realistic localization noise. As the results shown in Fig. 2, compared to the traditional
unsupervised method CPD [2], our DOtA demonstrates stronger robustness. To further investigate the sources of robustness
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in DOtA, we statistically analyze the distribution of Intersection over Union (IOU) between DOtA labels and the ground truth
labels, as depicted in the Fig. 3.
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Figure 2. Additional Study on Robustness to localization noise.
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Figure 3. Distribution of Intersection over Union (IOU) between DOtA labels and the ground truth labels.

3. The study of collision tolerance parameter φr and alignment parameter φo.
In this section, we study the impact of different collision tolerance parameter and alignment parameter on detector perfor-
mance. As shown in Tab. 1, we final set φr = 0.1 and φo = 0.7.

φr 0.01 0.05 0.10 0.15 0.20 φo 0.1 0.3 0.5 0.7 0.8 0.9
AP@0.5 20.66 35.27 40.01 38.25 37.63 AP@0.5 40.23 40.79 41.45 43.27 43.08 42.77

Table 1. The study of collision tolerance parameter φr and alignment parameter φo.

4. The study of scaling factor ηe.
In this section, we study the impact of different scaling factor on label recall rates. As shown in Tab. 2, the optimal scaling
factors are [0.5, 0.2].



ηe [0.4, 0.2] [0.4, 0.3] [0.5, 0.2] [0.5, 0.3] [0.6, 0.2] [0.6, 0.3] [0.6, 0.4]
Reacll@0.5 51.66 51.45 51.87 51.73 51.61 51.70 50.21

Table 2. The study of scaling factor ηe.
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