Rectified Diffusion Guidance for Conditional Generation

Supplementary Material

Mengfei Xial?* Nan Xue? Yujun Shen?’ Ran Yi® Tieliang Gong* Yong-Jin Liu'"

'Tsinghua University ~ 2Ant Group
3Shanghai Jiao Tong University ~ “Xi’an Jiao Tong University

Appendix
A. Proofs and derivations

In this section, we will prove the theorems stated in the main manuscript.

A.l. Proof of Theorem 1

We first claim two lemmas which are crucial for the proof.

Lemma 1. Ler g(x;) and h(xy, €) be integrable functions, then the following equality holds.

E 4 [(9050). Eq ey (132,)] = B 1), A3,)] s1)

in which (-,) is inner product.
Proof of Lemma 1. Note that

Ex (9(30): Byt (. €))] = [(9001, Byt [, €)) a(x)x ()

_ / (9(), / h(x, €)q(e[x)de)q(x)dx (S3)

— [a0 . eatxiatelx)dedx (54)

= By [{9(), hlx,)] (55)

in which Eq. (S4) is by linearity of integral. O

Lemma 2. The following equality of expectation holds:

1
Exles (6, 1)] = Exlx] - %EC,XOVX[XO]‘ (S6)

*Work finished during internship at Ant Group.
Corresponding author.

Proof of Lemma 2. Note that

Vx IOg qt (X) =

-/ a:(xlc)g(c)

vxqt (X)

()
Vx | @(x]|c)g(c)de

(%)
J Vxa:(x|c)g(c)de

q+(x)
J a:(x]c)q(c) Vi log qi (x| c)de

qt(x)

V4 lo x|ec)de
(%) g q:(x|c)

= eq(C\X) [V log q:(x[c)|x].

Therefore, we have

GQ(X, t) =]eq(c

Ix) [€0(x, ¢, t)[X]

X — X
=Eq, (¢1x) [Eq(xox@ [} X}

1 Qi
- —x- 2
UtX oy qt (c,x0]x) [X0|X]7
and
1 Qi
EX[GG(Xa t)] = ;EX[X] - 7EX[EQt(C’XO‘X) [XO‘XH

t Ot
1 Qg

= 7Ex - 7Ecx x .
Bl — 2Ll

Then we start to prove Theorem 1.

Ot

X — X
alexolx) |~ IX

Ot

Proof of Theorem 1. Similar to derivation in DDIM [28], first rewrite Js , as below:

T

Ts =B | =log po(xo[x1,¢) + > Dicr(as(xt—1]xs, %0,) |[Po (ki1 %1, 0)) | + C,

t=2

in which C1 is a constant not involving v and 6.

(87

(S8)

(89)

(S10)

(S11)

(S12)

(S13)

(S14)

(S15)

(S16)

(S17)

(S18)

(S19)

Note that €y(x;, ¢, t) = Eq(e|x,,c) [€]%¢]. Hence, for ¢ > 1:

Eq (s .x0le) [Pr L (g5 (Xt —1(%¢, X0, €) Do (X4 —1[¢, €))] (S20)
= Eq(xsixo]e) [Dr L (a5 (Xe—1[%¢, X0, €) || g5 (xe—1 2, £ (%, €), €))] (S21)
o¢ Eg(ae, xole) [I%0 = £ (%2, 0) 3] (S22)
X E spmqixole) 1€ — (veo(xe,¢,) + (1 = y)ep(xt, 1))|3] (S23)

e~N(0,I)

Xt=QtX0+0r€E

= Ex, e[l7(e — €a (x4, ¢,1)) + (1 =) (€ — €a(x1,1)) 3] (S24)
= Ex,,e[V’lle — €o(xe, .)13 + (1 — 7)*[le — eq(x, 1) 3]

+29(1 — 7)Ex, e[(€ — €a(xs, ¢, 1), € — €g(xy,1))] (S25)
= Ex,,e[Vll€e — €o(xt, ¢,)13 + (1 —)% [l — €a(x, 1) 3]

+27(1 = 7)Exq,el[(€ = Eqelx,) [€]x¢], € — €a(x¢, 1))] (S26)
= Ex,e[Vlle — €o(xt, ¢,)13 + (1 —)% [l — €q (x4, 1) 3]

+27(1 — 7)Ex, el[(€ — €, € — €(x¢, 1))] (827)
= 7 Exo elll€ — €o(xe, ¢, 1) [13] + (1 —) *Ex, e[l € — €a(xe, 1) 3], (528)

in which Eq. (S27) is from Lemma 1. As for ¢ = 1 we have similar derivation:

Eq(x,,xol¢)[— 108 Do (X0[x1, €))] (S29)
o Eqxy ol [lIX0 — £5(x1, ¢)|13] + C2 (S30)
X E xomqixole) 1€ — (veo(x1,¢,1) + (1 —7)eg(x1,1))[13] + Cs (S31)
e~N(0,I)
X1=a1Xg+01€
= V’Exqelll€ — €a(x1,¢,1)[[5] + (1 = 7)*Exy ellle — €9 (x1,1) 3] + Cs, (S32)

in which Cs and C'3 are constants not involving v and §. Given that CFG involves score matching using both conditional
and unconditional distributions, and that .J; ., is proportional to the score matching objective up to a constant, we confirm the
equivalence between Js , and objective of native DPM under CFG.

Note that in native PF-ODE, we have

dx 1
5 = fexe = 500 Vx Jog (o), (S33)
eq (xt]c) [th log g+ (Xt|)] eq (xt)c)[eq(xO‘xt’c) [th log qt(xt|x0’ c)” (S34)
= Ey, (xo.x:/0) [V, 10g g2 (x¢[%0, €)] (S35)
=0, (S36)

in which Eq. (S36) holds since forward diffusion process ¢;(x¢|xo, ¢) is implemented by adding Gaussian noise. However,
according to Eq. (10) and Lemma 2, we have

Ex, [st,(xt, ¢)] = Ex, [7Vx, log g:(x¢|c) + (1 — 7) Vi, log g4 (x¢)] (S37)
= (1 = 7)Ex,[Vx, log g:(x¢)] (S38)
1
= o (B [x1] — iy x, o)) (839)
t
v—1
= 57 Bautxle i) = eFoxo.0) [Xo])- (S40)

Note that Eg, (x, |) [%¢] = ¢Eq (xo|c) [X0]. and that By, o[Xo] = [Eqq(xo|c) [Xo]de. Therefore when y # 1, Ex, [s¢ (¢,)] is
not guaranteed to be identical with 0. In other words, denoising with CFG cannot be expressed as a reciprocal of diffusion
process with Gaussian noise. O

A.2. Proof of Theorem 2
Proof. Given Eq. (9), for v > 1, we have

Sm(xta ¢) = 7Vx, log g (x¢|c) + (1 —)V, log q:(x:)

Xt —C X¢
= — — 1—
T (V)t+2’
dx; 1 ()
—_— == X
dt g Sty \ Xt €

_ gl 1=y _._ 7
_xt<2(t+1)+2(t+2)) 26+ 1)

By variation of constants formula, we can analytically solve qgﬁfer(xdc) in Eq. (S44).

t
t 1— t 1—
X; = efT 2(511)+2(s+1>)d5 C _/ c v e I 2(7‘11)+2(7‘+’Y2)drds
r 2(s+1)

t
= (t+1)3(t+2)= <C’ - c% / (s+1)""2 (s+ 2)2%15) ,
T
in which C' is a constant to determine. Let t = T, we can see that

XT
(T+1)3(T+2) =

deter
0,y

T
xg = 277" WXT — +01/ (s+1)" 2 (s+2) 2 ds | .
(T+1)2(T+2)= 2o

Therefore, we achieve the closed-form formula for g (xp]c) as below:

Since g7 (xr|c) ~ N(c,T + 1), we can deduce that

eter _ T+1
i xale) ~ A (cot 102 T)

in which

T
o(7,T)=2"7" (! +%/O (5 + 1)_%“(8—&—2)_127&9) .

(T+1)3(T+2)=

It is obvious that

1—n oo y+2 1—n
=277 [) e T,
0

i T+1 71
T3 (T+ D)W(T +2)7

Then it is suffices to calculate ¢(+) for all v > 1. First note that

+oo
b(1) = %/0 (s+1) 3ds =1,

6(3) = 2*12 /W(s 1 1) ¥ (s +2)ds = 2,

0

5 [T 7 7
¢(5) =2‘2§/0 (s+1)72(s+2)%ds = 3

(S41)
(S42)

(S43)

(S44)

(S45)

(S46)

(847)

(S48)

(S49)

(S50)

(S51)

(S52)

(S53)

(S54)

(S55)

For v > 1, denote by I(+) with

Note that for v > 1 we have

+oo
I(v):/o (s+1)" 7 (s+2)" 7 ds

-2 +Oo(s+ 1)~ d(s + 2) %

v+1
1 + 2 +oo y+4
- 1 2| 2 1 2) % d
7H((H)MH) 0+2 0(+)2(5+) s)
2 2
2 (X — 2).
v+1 2
Therefore, for v > 1 we have
2y
=1 2)—1
o(v) +1(<z5(w+))

From Eqgs. (S53) to (S55) we have

For 7 € [1, 3], by Cauchy-Schwarz inequality with p € [0, 1], we have

(I(v))p(f(@)l_p
: </O+OO(S ey Wd8>p (/Om(s +1)75(s+ 2)2(13) o

1-p

> [T (s) (G0 R 2?) e

+oo _ o
:/ (s+ 1)~ 3" (s +2)" " ds.
0

Letp = g2 € [0,1] for y € [1, 3], from Eq. (S67) we have

Therefore for v € [1, 3], we have
N

i (8) T (56\7T 7 (10\ T _
P(7) 22 2<3> (15> 15<7) =: hy(7)

Since - — 3 log % > 0 for v € [1,3], h1(7) increases monotonically on € [1,3] and (1) = 37,

(S56)

(S57)

(S58)

(S59)

(S60)

(S61)

(S62)

(S63)

(S64)

(S65)

(S66)

(S67)

(S68)

(S69)

h1(3) = 2. Similarly, for

€ [3, 5], by Cauchy-Schwarz inequality with p € [0, 1], we have

1—
(rw) (1) (570)
oo 3 r oo a2 P
= (/ (s+ 1)_2ds) (/ (s+1)"= (s+2)” st) (S71)
0 0
+oo 3\ 1—P 42 Y\ P
= +1)72 +1)77 27 (s+2 d S72
| (07 (e ey) s (572
+oo 3—p+yp —p
:/ (s +1)" 5% (s 4+ 2) 53 (S73)
0
Letp = % € [0,1] for v € [3, 5], from Eq. (S73) we have
1) = (1) 7 (1)) T =2 <3) - (S74)
Therefore for -y € [3, 5]
iy (8YT ()T
dy) =277 52 (3> =7 <3> =: ha(7) (S75)

It is easy to see that ho(y) > 2 for v € [3,5]. Then by mathematical induction and Eq. (S62), we have ¢(v) > 2 for all
v = 3. Specially, we have

lim ¢(y) = 2. (S76)

Y—+o00

And specifically, for v € N, v > 1, we analytically calculate ¢(~,T) for v = 2n + 1 and v = 2n, respectively. First let
v =2n+1,n € N. We can see that

(s+2)7 7 = (s+2)" ch (s+ 1)k (S77)

T) T
/ (s+1)"" % (s+2)" st:/ (s+1)" <ZCk5+1) (S78)
0 0
=Z (c;; / (s+ 1)) (S79)
k=0 0

-y (c§2k27((T+1)2'“ ! 1)) (S80)

Since 2k — v < 0fork = 0,1, -+ ,n, we have (T + 1)*%

o7, T) (S81)

T
/(5+1) B (s+2) ”ds> (S82)
0

' 1))) (S83)

7
2
S (ick%“ (1—(T+1)2k2”)>>. (S84)
k=0

(T+1)2(T+2)=

— 0 as T goes to infinity and hence

When T' — +00, we have

n

2n+1
__ o—n k
o(2n+1)=2 (E C"Qn—2k+1>'

k=0

Then let v = 2n,n € N, and n > 1. We have

p
/s+1 ; (s+2)” T ds
/2$+1 (Vs +2)2mdvs + 2
/Qu — 1) " du

_ u2n 1(u2_1)—n+ 2n —1
n

/(u2 _ 1)—nu2n—2du’

(S85)

(S86)

(S87)

(S88)

(S89)

in which Eq. (S88) is due to integration by substitution with © = /s + 2 > 1, and Eq. (S89) is due to integration by parts.

Denote by I,, with
I, = /2(u2 —) W du, n >0,

then we have

1 2n — 1
Li=——u @2 -1+ on>1
n
Forn > 1,letI, = (Q(EH)%?"An,then we have
(2n — 1N 1 9p1, o _ 2n —1 (2n — 3)!
T, = P -1 _ > 2
(2n)it " n' (u)+ n (2n—2)° "D "
L@ o —n
A, =A, 1 7(2n—1)” 2 1(u2 n™, nx=2
Therefore for n > 2, we have
~ 1 2R gy s k
A=M=2 et oD
k=2
and
U 1 u—1
_ | =1
Z_1 T2 "
In = 2k—1
(2n — 1) 2u 1 &1 (2K uke
1 — - > 2.
2n)!! 71 TR Zk(%—l)”(—nE "
Therefore, for v = 2 we have
T
Sy, T)=2"7" 71 +1/ (s+1)" " (s+2) 2 ds
(T +1)2(T +2) 2 Jo
1y 1
= 2 T

1971 VT +2-1 V2 -1
2 —— | log ———— —log ,
22 VT +2+1 V2+1

(S90)

(S91)

(S92)

(S93)

(S94)

(S95)

(S96)

(S97)

and for v > 4 we have

o, T) (5%8)
_ 9’5" 1 H/T(sH) (s 4+2) 7 ds (S99)
(T+1)3(T+2)= 2o
- 1

(T+1)3(T+2)7

1y (2n— D (2T +2
2 (20l (T+1 _2‘/5)

1-0 7 (2n — 1! VT +2-1 V2-1
+277 — log — log
2 (2n)!! VT +2+1 V2+1
2k—1
1—7 v (2n—1 1 kN ((T—l—2) z 2k—1>
-2 L -2) S100
SCENCS <Zk 2% — DI\ (T + 1) ’ (5100)
When T' — +00, we have
1. v2-1
257" [V2 = —log Yo—— |, n=1,
< 2 g\/§+1>
¢(2n) = (S101)

(2n — 1)!'V2n | V2 -1
(2n)N12n ((kz_:k 2k—1 >+2\F log\/i+1>’

O
A.3. Proof of Theorem 3
Proof. We first write the closed-form expressions of DDIM sampler as below:
Xi_1 = a;;lxt + (041 — . ot)€p(x¢, ¢, 1), (S102)
t t
- Q1 - _ . -
Ri1 = — =%+ (001 = ——01) (€0(Xe, €,1) + 060 (%1, 1)). (S103)
t t
Then we have
Ay =By, [x1] — Ex, [X—1] (S104)
oy -
= =1 (Ext [Xt] - Efit [Xt])
Qi
oy . -
+ (Utfl - ; ! Jt)(Ext [69 (Xta C)] -]Eit [7169 (Xt7 c, t) + Yo€o (Xtv t)]) (8105)
t
Note that
Xt — X ~ Xp — Xg .
Ge(Xt, C, t) = Eq(xo\xt,c) |:ttO|Xt:| 5 eo(Xt, c, t) = Eq(xdfq,c) |:ttoxt:| . (S106)
Ot gt
Therefore, by ¢ (x:|c) = [go(x0|c)qot (x¢|%0, ¢)dx(and Lemma 1 we have
[x; — ouXp] 1 o
Ey, [€0(xt, ¢, 1)] = Bagg s, | 2 | = —Ey, [%1] — —Ex, [X0). (S107)
L Ot] Ot Ot
Similarly, by pg(X¢|c) = [go(x0|c)gor (x7|X0, ¢)po(X¢|x7, ¢)dxodxT We have
(%, —) 1
Ex, [€0(%e, ¢,1)] = By 2, | 0 | = =By, [fe] — LB, [X0). (S108)
L 7] Ot Ot

Then we can simplify A; as below:

QU QU 1 - -
Apr= A A+ (001 — —0y)(— A — Ex, [(11 — 1)ea(Xe, ¢, 1) + Yo€a(Xe, 1)]) (5109)
(673 Qi Ot
O Qg — - ~
= = A — (01— 0B (1 — Deg (e e 1) + q0€0(%e, 1)) (S110)
t t
O¢_ (o7 -
= LA — (011 — ——00)Ex, [€, 0 (%)) (S111)
Ot (077

A; = 0 implies that B, ,|c)[%:] = Ep,(x,|c)[X¢]. Therefore, by Egs. (S107) and (S108) we have Ey,[es(x¢,c,t)] =
Ex,[€9(X¢, ¢, t)]. According to Lemma 2 and by calculating the expectation over x; and X; respectively, we have

~ 1 - (67 1 - Qi

Eit [69(Xt’t)] = ;tEit [Xt] - OTEC’xO’it [XO] = ;tEit [Xt} - OT/EC’XO [Xo], (S112)
1 (a7 1 Qi

B0, 1] = B] = 4B 0] = B] — 2B ol 1)

Since Ay = 0, we have Ey, [€9(x¢,)] = Ex, [€0(X¢,)], and thus

Q1

Apy =—(01-1 = o) Ex, [(71 — Deo(x, ¢, 1) + Y0€0 (x4, 1)]) (S114)
¢
(677
= (011 =~ 01)Ex [, 50 (x1)]- (S115)
t
O
A.4. Proof of Theorem 4
Proof. Given Eq. (28), for any ~y; and g, we have
St 0 (Xt: €) = 71V, 10g ge(x¢]c) + 70V, log g¢(x¢) (S116)
Xt —C Xt
- _ - _ S117
4t t+1 ’YOt + 9’ ()
dx 1
th = =5 5tm.0(%1:0) (S118)
gl o gt
= - . S119
Xt<2(ﬁ+1)+2(t+2)> “Qt+1) (5119)
By variation of constants formula, we can analytically solve qgfifff% (xp|c) in Eq. (S119).
t t t
x, = edr T taatnds (o _/ e— Lo~ J st et drgg (S120)
t
—t+)T +2)F (C - c%/ (s+1)"" (s+ 2)—”2°ds> , (S121)
T
in which C'is a constant to determine. Let t = T, we can see that
X7
C= . (S122)
(T+1)2(T+2)%
Therefore, we achieve the closed-form formula for ¢§<'* (xo|c) as below:
2% xr + e T(+1)" T (s +2)"Fd (S123)
Xp = c— s s s .
0 T+1)3(T+2)% 2
Since g7 (xr|c) ~ N(c, T + 1), we can deduce that
VaTgaer (o) [Xo] = 270(T + 1)1 77(T +2) 7. (S124)

O

A.5. Proof of Theorem 5

Proof. According to Egs. (32) and (33), we can write the variational lower bound of pg(xo.7|c) as below:

Jﬁ;n,'yo = qug(xg;T\c) [lOg qs (XI:T|X07 C) - 1Ogﬁ9 (XO:T‘C)] (8125)
= E [log pg(x0[x1, c)]
T
E > Drcr(gs(xe—1[xe, %o, ¢)|lpo(x¢ -1 1%+, ¢))
=2
Yo, (S126)

in which C is a constant not involving 71, vy, and 6.
Note that €g(x¢, ¢, t) = Eq(e|x,,c) [€]%¢]. Hence, for ¢ > 1:

Eq(x, x0le) [Pr L (@5 (Xt—1]%t, X0, €) | Do (Xt 1[4, €))] (S127)
= Eq(x,xol0) [DKL (qs(Xt 11%¢, X0, €)[las (-1 [x, £ (x¢, ¢), €))] (S128)
o By, ol [[1%0 — £ (x¢,) [3] (S129)
X E yymqixole) [l€ = (v1€0(xt, ¢, 1) +v0€0 (x4, 1))][3] (S130)

e~N(0,I)

Xy=ouXo+0€
= Exy.elll€ll3 + [Iv1€a(xs, ¢, 1) +0€0(xt, 1)][3]
— 2E, [(€, v1€0(Xt, ¢,) + Vo€ (X1, 1))] (S131)
= Exo.elllell3 + [In1€a(xe, ¢, t) +0€0(xt, 1)][3]
_QEXO,GKEq(eIxf,,C)[|Xt] 7166(Xt7 t)
= Exoe[ll€ll + [In1€a(xe, ¢, 1) + €0 (xt, 1) 3]
— 2B, [(€o(xs, ¢, t), 1€0(Xy, €, T) + Yo€0 (X4, 1))] (S133)
= Exo.elllen(xe, ¢, t)|5 + €0 (xt, ¢, 1) +v0€0(x1, 1) 3]
— 2E, e[(€0(xt, ¢, 1), y1€0(Xt, €,) + Yo€0(X2))]

+ y0€0 (%, 1))] (S132)

+ Exo clll€ll — llea(x, ¢, 1)][3] (S134)
= Exy.elll€0(xt, ¢, t) — (vi€a(xXs, ¢, 1) + Y0€0(x¢, 1)) |13] + Co (S135)
= Exo.elll(71 — 1)ea(xt, ¢, t) + Y0€0 (X, 1)|13] + Co, (S136)

in which Eq. (S132) is from Lemma 1, and Cy = Ey, [||€||3 — ||€a(x¢, ¢, t)]|3] is constant not involving 1 and vo. As for
t = 1 we have similar derivation:

Eg(x1,x0]¢) [~ 10g Po (%0 (%1, €))] (S137)
o Eqxy xoley %0 — £5(x1, ¢)[|3] + C3 (S138)
X E xomg(xole) L€ — (v1€0(x1,¢,1) +y0€0(x1,1))|13] + C4 (S139)
e~N(0,I)
X1=«a1Xo+01€
= Exp.elll(71 — Dea(x1,¢,1) + y0€0(x1,1)) 3] + Cs, (S140)
in which C5, C4, and Cj are constants not involving 1 and ~g. O

B. Pseudo-codes of Lookup Table

We below propose the pseudo-codes to achieve the lookup table and corresponding guided sampling in Algorithms 1 and 2.

Algorithm 1 Pseudo-code to achieve lookup table of ReCFG in a PyTorch-like style.

def calculate_lookup_table(net, gnet, data_loader, timesteps):

1
2 """Defines the function to maintain the lookup table.

4 Args:

5 net: Noise prediction model for conditional score function.

6 gnet: Noise prediction model for unconditional score function.
7 data_loader: Dataloader to calculate score functions.

8 timesteps: All timesteps under the given sampling trajectory.
9

10 Returns:

11 coeffs: Lookup list under all timesteps and conditions.
W

13 suml_dict, sum2_dict = dict (), dict ()

14 # Iterate the dataloader.

15 for x, ¢ in data_loader:

16 # Iterate for all timesteps.

17 sumls, sum2s = list (), list()

18 for nfe_idx, t in enumerate (timesteps):

19 # Forward process.

20 noise = torch.randn_like (x)

21 x_t = alpha_t » x + sigma_t % noise

2

23 # Calculate score functions first.

24 eps_cond, eps_uncond = net(x_t, c, t), gnet(x_t, t)
25

26 # Calculate the expectation.

27 sumls.append (eps_cond.mean (dim=0, keepdim=True))
28 sum2s.append (eps_uncond.mean (dim=0, keepdim=True)

30 # Save the results.
31 update_dict (suml_dict, sum2_dict, ¢, sumls, sum2s)

33 # Calculate coefficients according to Eq. (34) for all timesteps.
34 coeffs = {c: suml_dict([c] / sum2_dict[c] for ¢ in suml_dict}

36 # Record the mean coefficient for other conditions.
37 coeffs.update (avg=sum(coeffs.values()) / len(coeffs)

39 return coeffs

Algorithm 2 Pseudo-code for guided sampling by lookup table of ReCFG in a PyTorch-like style.

def guided_sampler (sampler, net, gnet, gamma_l, noise, c, timesteps, coeffs):

1
2 """Defines the guided sampling with lookup table.

3

4 Args:

5 sampler: Native sampler without guidance, e.g., DDIM sampler.
6 net: Noise prediction model for conditional score function.

7 gnet: Noise prediction model for unconditional score function.
8 gamma_1l: Guidance strength similar to CFG of type ‘float‘.

9 noise: Initial random noise to denoise.

10 c: Input label.
11 timesteps: All timesteps under the given sampling trajectory.

12 coeffs: Pre-calculated lookup table.

13

14 Returns:

15 x: A batch of samples by guided sampling.

16 e

17 # Calculate gamma_0.

18 if ¢ in coeffs:

19 gamma_0s = (1. - gamma_1l) = coeffs[c]

20 else:

21 gamma_0s = (1. - gamma_1l) = coeffs[’avg’]

22 # Ensure gamma_0 <= 0 and gamma_l + gamma_0 >= 1.

23 gamma_0Os = clamp (gamma_0Os, gamma_1)

24

25 # Guided sampling using gamma_1l and gamma_0.

26 X = noise

27 for t, gamma_0 in zip(timesteps, gamma_0s) :

28 # Calculate score functions and apply guided sampling.

29 eps_cond, eps_uncond = net(x, c, t), gnet(x, t)

30 eps = eps_cond * gamma_l + eps_uncond * gamma_0
x = sampler (x, eps, t)

return x

