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S1. Proof of Theorem 1
Given the covariance matrix Cov(x|z), the conditional entropy H(x|z) satisfies that:

H(x|z) ≤ EZ

[
1

2
log

(
(2πe)ddet (Cov(x|z))

)]
, (S1)

where det denotes the determinant of the matrix. Equation S1 formalizes the principle that the Gaussian distribution achieves
the maximum entropy among all distributions with a given covariance.
Let λ ∈ {λ1, ..., λd} denote the eigenvalues of the matrix Cov(x|z). It follows that:

det(Cov(x|z)) =
d∏

i=1

λi, T r(Cov(x|z)) =
d∑

i=1

λi. (S2)

Using the Jensen inequality, we can get:

H(x|z) ≤ EZ

[
d

2
log

(
2πe

Tr (Cov(x|z))
d

)]
, (S3)

As the log function is concave, we can get:

H(x|z) ≤ d

2
log

(
2πe

d
EZ [Tr (Cov(x|z))]

)
, (S4)

≤ d

2
log (2πeε) , (S5)

which concludes the proof of Theorem 1.

S2. Proof of Theorem 2
Proposition 2 illustrates that maximizing the H(x|z) is equivalent to minimizing the mutual information I(z; ẑ), which is:

I(z; ẑ) = H(z)−H(z|ẑ) = H(z)− 1

2
log((2πe)d |Σp|). (S6)

It is hard to give a closed-form representation of H(z) when z follows the Gaussian mixture distribution. In [3], an upper
bound of H(z) is given by:

H(z) ≤
k∑

i=1

πi

(
− log(πi) +

1

2
log((2πe)d |Σi +Σp|)

)
. (S7)
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Therefore, we claim that the mutual information I(z; ẑ) satisfies that:

I(z; ẑ) ≤
k∑

i=1

πi

(
− log(πi) +

1

2
log(

|Σi +Σp|
|Σp|

)

)
, (S8)

which concludes the proof of Theorem 2.

S3. Architecture and Training details of Inversion Models
Decoding-based inversion model: We allow the inversion adversary to utilize a complex inversion model to reconstruct the
original inputs. Specifically, we utilize a decoder network with 8 concatenated residual blocks and the corresponding number
of transpose convolutional blocks to recover the original size of the input. Each convolutional layer has 64 channels.
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Figure S1. The structure of the decoding network.

The architecture of the decoding-based inversion model is illustrated in Figure S1. Specifically, the initial eight residual blocks
are designed to process the extracted features, while the transposed convolutional layers progressively upsample the feature
maps to match the dimensions of the original image. The final convolutional layer performs the concluding processing, and the
application of the Sigmoid activation function normalizes the output to the range [0, 1]. The decoder comprises approximately
711.54k trainable parameters and requires 90.66 MMAC operations for computation. We train the decoder model for 50
epochs using the Adam optimizer with an initial learning rate of 0.005.
GAN-based inversion model: We follows the methodology outlined in [8] to implement the GAN-based inversion attack.
Concurrently, we replace the original generator with the proposed decoding-based network, which is architecturally more
complex and delivers superior performance.
The GAN inversion model is trained for 150 epochs using the Adam optimizer with an initial learning rate of 0.005.
Additionally, a MSE loss term is incorporated to regularize the training process, where we find it effectively facilitates the
GAN inversion model in achieving a lower reconstruction MSE.

S4. Experimental results of SSIM and PSNR
The experimental results of reconstruction SSIM and PSNR on the validation set on the CIFAR10, CIFAR100, TinyImageNet,
and FaceScrub datasets are presented in Table S1 to S4. We provide a comparative analysis of each method, both before and
after integrating the proposed CEM algorithm.
The results show that the integration of the CEM algorithm consistently enhances all defense methods on four datasets. On the
CIFAR10 dataset, plugging in our proposed CEM algorithm improves the average of SSIM from 0.673 to 0.639 and PSNR
from 18.28 to 17.51. On the CIFAR100 dataset, plugging in our proposed CEM algorithm improves the average of SSIM
from 0.814 to 0.755 and PSNR from 23.06 to 20.63. On the TinyImageNet dataset, plugging in our proposed CEM algorithm
improves the average of SSIM from 0.567 to 0.523 and PSNR from 18.09 to 17.37. On the FaceScrub dataset, plugging in
our proposed CEM algorithm improves the average of SSIM from 0.794 to 0.752 and PSNR from 21.59 to 20.07.



Table S1. Comparative results on CIFAR10 dataset: we present the accuracy and reconstruction SSIM and PSNR on the validation set.

Methods Acc.↑ Dec.-based MIA [5] GAN-based MIA [8]

SSIM↓ PSNR↓ SSIM↓ PSNR↓
Bottleneck 90.87 0.863 23.82 0.861 23.46
Bottleneck+CEM 90.69 0.813 22.36 0.783 20.96

DistCorr [7] 89.52 0.779 20.86 0.780 20.55
DistCorr+CEM 89.80 0.757 20.31 0.760 20.17

Dropout [2] 87.75 0.729 19.82 0.733 19.54
Dropout+CEM 87.53 0.682 18.72 0.687 18.47

PATROL [1] 89.58 0.537 15.33 0.558 15.12
PATROL+CEM 89.67 0.506 14.74 0.520 14.59

ResSFL [5] 89.68 0.595 16.19 0.639 16.14
ResSFL+CEM 90.11 0.571 16.00 0.583 15.63

Noise_Nopeek [6] 87.19 0.664 17.98 0.668 17.82
Noise_Nopeek+CEM 87.08 0.643 17.59 0.651 17.49

Noise_ARL [4] 87.78 0.501 14.73 0.518 14.65
Noise_ARL+CEM 87.62 0.484 14.48 0.502 14.40

Average w/o CEM 88.91 0.667 18.39 0.680 18.18
Average w/ CEM 88.92 0.637 17.74 0.641 17.38

Table S2. Comparative results on CIFAR100 dataset: we present the accuracy and reconstruction SSIM and PSNR on the validation set.

Methods Acc.↑ Dec.-based MIA [5] GAN-based MIA [8]

SSIM↓ PSNR↓ SSIM↓ PSNR↓
Bottleneck 68.43 0.975 31.54 0.970 30.96
Bottleneck+CEM 68.42 0.856 22.36 0.937 26.98

DistCorr [7] 66.21 0.880 22.67 0.928 26.02
DistCorr+CEM 66.27 0.812 21.30 0.877 23.46

Dropout [2] 65.85 0.865 23.76 0.936 27.44
Dropout+CEM 65.92 0.816 22.21 0.890 24.94

PATROL [1] 65.10 0.478 14.74 0.634 16.23
PATROL+CEM 65.07 0.440 13.77 0.603 15.96

ResSFL [5] 66.94 0.866 22.92 0.935 26.98
ResSFL+CEM 66.96 0.770 20.31 0.866 23.37

Noise_Nopeek [6] 65.55 0.841 22.00 0.890 24.20
Noise_Nopeek+CEM 65.33 0.797 20.80 0.858 22.83

Noise_ARL [4] 62.58 0.521 15.57 0.691 17.85
Noise_ARL+CEM 62.34 0.457 16.27 0.599 14.40

Average w/o CEM 65.81 0.775 21.88 0.854 24.24
Average w/ CEM 65.75 0.706 19.57 0.804 21.70



Table S3. Comparative results on TinyImageNet dataset: we present the accuracy and reconstruction SSIM and PSNR on the validation set.

Methods Acc.↑ Dec.-based MIA [5] GAN-based MIA [8]

SSIM↓ PSNR↓ SSIM↓ PSNR↓
Bottleneck 52.77 0.666 19.87 0.698 20.36
Bottleneck+CEM 52.52 0.593 18.86 0.623 19.03

DistCorr [7] 51.79 0.598 18.38 0.627 18.66
DistCorr+CEM 51.78 0.527 17.21 0.553 17.74

Dropout [2] 50.72 0.548 17.87 0.567 18.21
Dropout+CEM 50.75 0.511 17.30 0.533 17.64

PATROL [1] 51.75 0.512 17.28 0.536 17.54
PATROL+CEM 51.64 0.489 16.79 0.524 17.23

ResSFL [5] 51.99 0.522 17.64 0.552 17.93
ResSFL+CEM 52.07 0.495 17.12 0.521 17.61

Noise_Nopeek [6] 51.63 0.578 18.04 0.588 18.18
Noise_Nopeek+CEM 52.01 0.527 17.44 0.551 17.77

Noise_ARL [4] 51.03 0.463 16.49 0.486 16.88
Noise_ARL+CEM 50.85 0.428 15.67 0.441 15.96

Average w/o CEM 51.66 0.555 17.93 0.579 18.25
Average w/ CEM 51.62 0.510 17.19 0.535 17.56

Table S4. Comparative results on FaceScrub dataset: we present the prediction accuracy and reconstruction SSIM and PSNR on the
validation set.

Methods Acc.↑ Dec.-based MIA [5] GAN-based MIA [8]

SSIM↓ PSNR↓ SSIM↓ PSNR↓
Bottleneck 85.12 0.898 26.02 0.864 25.68
Bottleneck+CEM 85.00 0.860 24.45 0.821 24.31

DistCorr [7] 83.42 0.853 24.20 0.848 23.87
DistCorr+CEM 83.78 0.833 23.27 0.795 21.30

Dropout [2] 79.30 0.813 22.83 0.808 22.44
Dropout+CEM 79.19 0.776 21.30 0.771 20.91

PATROL [1] 79.18 0.737 19.28 0.731 18.63
PATROL+CEM 79.88 0.685 17.32 0.681 17.16

ResSFL [5] 79.60 0.745 19.50 0.736 18.47
ResSFL+CEM 79.54 0.713 18.29 0.710 17.93

Noise_Nopeek [6] 82.06 0.844 22.83 0.839 22.51
Noise_Nopeek+CEM 81.96 0.784 21.24 0.777 20.45

Noise_ARL [4] 80.14 0.705 18.09 0.710 18.01
Noise_ARL+CEM 80.33 0.669 16.75 0.660 16.36

Average w/o CEM 81.26 0.799 21.82 0.790 21.37
Average w/ CEM 81.38 0.760 20.37 0.745 19.77



S5. Experimental results on CIFAR100
The performance of different defense methods on the CIFAR100 dataset is presented in Table S5, where we provide a
comparative analysis of each method, both before and after integrating the proposed CEM algorithm. The results indicate
again that the integration of the CEM algorithm brings substantial inversion robustness gain. Integrating the CEM algorithm
yields an average increase in the reconstruction MSE of 40.5% for training data and 44.8% for inference data, without
compromising prediction accuracy.

Table S5. Comparative results on CIFAR100 dataset: we present the accuracy and reconstruction MSE of different defense methods using
the VGG11 model with and without integrating the proposed CEM.

Methods Acc.↑ Dec.-based MSE [5] GAN-based MSE [8]

Train↑ Infer↑ Train↑ Infer↑
Bottleneck 68.43 0.0007 0.0007 0.0009 0.0008
Bottleneck+CEM 68.42 0.0058 0.0059 0.0019 0.0020

DistCorr [7] 66.21 0.0054 0.0055 0.0023 0.0025
DistCorr+CEM 66.27 0.0074 0.0075 0.0044 0.0045

Dropout [2] 65.85 0.0042 0.0043 0.0016 0.0018
Dropout+CEM 65.92 0.0060 0.0061 0.0031 0.0032

PATROL [1] 65.10 0.0335 0.0346 0.0196 0.0238
PATROL+CEM 65.07 0.0419 0.0423 0.0235 0.0253

ResSFL [5] 66.94 0.0051 0.0052 0.0019 0.0020
ResSFL+CEM 66.96 0.0093 0.0095 0.0043 0.0046

Noise_Nopeek [6] 65.55 0.0063 0.0063 0.0037 0.0038
Noise_Nopeek+CEM 65.33 0.0083 0.0082 0.0052 0.0052

Noise_ARL [4] 62.58 0.0270 0.0277 0.0143 0.0164
Noise_ARL+CEM 62.34 0.0373 0.0380 0.0219 0.0236

Average w/o CEM 65.81 0.0117 0.0120 0.0063 0.0073
Average w/ CEM 65.75 0.0165 0.0168 0.0095 0.0102

S6. Analysis of the efficiency
We evaluate the inference time and model size of the local encoder and cloud server using one RTX 4090 GPU, with detailed
results presented in Table S6. Notably, all methods, except for PATROL, exhibit identical inference efficiency and parameter
counts. The inference time is measured by processing a batch of 128 images over 100 times

Table S6. Analysis of the efficiency.

Method Local encoder Could server

Parameters Flops Infere time Parameters Flops Infere time

PATROL 0.083M 27.3 MAC 65.61 ms 9.78M 136.38MAC 175.92ms

OTHERS 0.085M 21.9 MAC 55.16 ms 9.78M 133.59MAC 169.87ms
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