
DKDM: Data-Free Knowledge Distillation for Diffusion Models with Any
Architecture

Supplementary Material

7. Training and Sampling of DDPMs
In this section, we present the algorithms for training and
sampling from standard DDPMs. The specific details have
been previously introduced in Sec. 2.

Algorithm 2 Diffusion Models Training
1: repeat
2: x0

⇠ q(x0), t ⇠ [1, ..., T], ✏ ⇠ N (0, I)
3: obtain the noisy sample xt using Eq. (4)
4: compute Lsimple using Eq. (11)
5: compute Lvlb using Eqs. (9) and (12)
6: take a gradient descent step on r✓Lhybrid

7: until converged

Algorithm 3 Diffusion Models Sampling

1: x̂T
⇠ N (0, I)

2: for t := T, ..., 1 do
3: if t > 1 then z ⇠ N (0, I), else z = 0
4: x̂t�1 = 1p

↵t
(x̂t

�
1�↵tp
1�↵̄t

✏✓(x̂t, t)) +
p
⌃✓(x̂t, t)z

5: end for
6: return x̂0

8. Hyperparameters
8.1. Hyperparameters for Main Results
For experiments of both dynamic iterative distillation and
baselines in pixel space, we use the hyperparameters spec-
ified by Ning et al. [37], which are also in line with those
adopted by Dhariwal and Nichol [8], as reported in Tab. 6.
Settings of these training process are basically the same as
those used in [8] and [37], including mixed precision train-
ing, EMA and so on. All the models are trained on NVIDIA
A100 GPUs (with 40G memory). For experiments in latent
sace, we follow hyperparameters utilized by Rombach et al.
[44], detailed in Tab. 7.

8.2. Hyperparameters for Cross-Architecture Dis-
tillation

Similar to the configuration used by Peebles and Xie [39],
the hyperparameters employed for the ViT-based diffusion
model in Sec. 4.2 are presented in Tab. 10. This particular
configuration was chosen due to the characteristic of ViT-
based diffusion models generally requiring more time for

57M 44M 32M 24M 14M

30

40

50

60

Sp
ee

d
(s

)

57M 44M 32M 24M 14M

6

8

10

12

FI
D

Model Size

Data-Free Ours

Model Size

(a) Performance (b) Speed

Figure 6. Performance and speed of DMs across different archi-
tectures on CIFAR10.

image generation compared to their CNN-based counter-
parts. To illustrate this point, when generating 2,500 images
on single A100 40GB GPU with 50 Improved DDPM steps,
it takes approximately 57 seconds for a 57M CNN diffusion
model, whereas a 19M ViT diffusion model requires 66 sec-
onds. Our final choice of this configuration was driven by
the aim to achieve fairness in experimentation and analysis.

8.3. Hyperparameters for Various Architectures

Tab. 8 shows the hyperparameters of different students
trained in Sec. 9 for results on various architectures.

9. Results on Various Architectures

We further compare the performance between our method
and data-free training on CIFAR10 across a diverse range
of architectures. Specifically, we tested five different model
sizes by directly specifying the architecture. Both the
teacher and student models employ Convolutional Neural
Networks (CNNs) and the results are shown in Fig. 6. De-
tailed descriptions of these architectures are available in
Sec. 8.3. Typically, we distilled a 14M model from a 57M
teacher model, maintaining competitive performance and
doubling the generation speed, compared with the 57M
model through data-free training. Here the speed is mea-
sured by the average time taken to generate 256 images on
a single NVIDIA A100 GPU. Additionally, the 44M and
33M student models demonstrated similar speeds, suggest-
ing that DKDM could benefit from integrating with efficient
architectural design techniques to further enhance the speed
and quality of DMs. This aspect, however, is beyond our
current scope and is designated for future research.

Hyperparameter CIFAR10 32x32 CelebA 64x64 ImageNet 32x32
Teacher Student Teacher Student Teacher Student

Model Parameters 57M 14M 295M 57M 57M 14M
Diffusion Steps 1,000 1,000 1000 1000 1000 1,000
Noise Schedule cosine cosine cosine cosine cosine cosine
Channels 128 64 192 96 128 64
Residual Blocks 3 3 3 2 3 3
Channels Multiple 1,2,2,2 1,2,2,2 1,2,3,4 1,2,3,4 1,2,2,2 1,2,2,2
Heads Channels 32 32 64 32 32 32
Attention Resolution 16,8 16,8 32,16,8 32,16,8 16,8 16,8
BigGAN Up / Downsample True True True True True True
Dropout 0.3 0.3 0.1 0.1 0.3 0.3
Batch Size 128 128 256 256 512 512
Distillation Iterations - 200K - 100K - 500K
Learning Rate - 1e-4 - 1e-4 - 1e-4
Early Stop - True - True - False
⇢ - 0.4 - 0.4 - 0.4

Table 6. Hyperparameters for main results in pixel space. “Teacher” refers to the architecture of pretrained models we utilized. “Student”
denotes the student architecture we adopt.

Hyperparameter CelebA-HQ 256x256 FFHQ 256x256
Teacher Student Teacher Student

f 4 4 4 4
z-shape 64x64x3 64x64x3 64x64x3 64x64x3
|Z| 8192 8192 8192 8192
Diffusion steps 1000 1000 1000 1000
Noise Schedule linear linear linear linear
Model Parameters 274 M 86 M 274 M 86 M
Channels 224 128 224 128
Depth 2 2 2 2
Channel Multiplier 1, 2, 3, 4 1, 2, 3, 4 1,2,3,4 1,2,3,4
Attention Resolutions 32, 16, 8 32, 16, 8 32, 16, 8 32, 16, 8
Head Channels 32 32 32 32
Batch Size 48 48 42 42
DistillationIterations - 410k - 640k
Learning Rate - 9.60e-05 - 8.40e-05
Early Stop - False - False
⇢ - 4 - 4

Table 7. Hyperparameters for main results in latent space. “Teacher” refers to the architecture of pretrained models we utilized. “Student”
denotes the student architecture we adopt.

10. GPU Memory and Training Speed

This section compares the training memory and speed be-
tween data-based training and our dynamic iterative distil-
lation. As detailed in Sec. 3.3, the size of the expanded
batch set B̂

+
1 used in our approach is |B̂

+
j | = ⇢T |B̂s

j |,
with ⇢ serving as the controlling factor. Increasing ⇢ evi-
dently raises the GPU memory requirements, as shown in

Fig. 7. However, we observed that the incremental GPU
memory consumption is relatively minor. Interestingly, our
method consumes almost the same amount of GPU mem-
ory in latent space as data-based training. This efficiency is
achieved because our method eliminates the need to convert
from pixel space to latent space—a process required in data-
based training during each training iteration. Therefore, as

Model Size 57M 44M 32M 24M 14M
Diffusion steps 1,000 1,000 1,000 1,000 1,000
Noise schedule cosine cosine cosine cosine cosine
Channels 128 128 96 96 64
Residual Blocks 3 2 3 2 3
Channels Multiple 1, 2, 2, 2 1, 2, 2, 2 1, 2, 2, 2 1, 2, 2, 2 1, 2, 2, 2
Heads Channels 32 32 32 32 32
Attention Resolution 16, 8 16, 8 16, 8 16, 8 16, 8
BigGAN Up / Downsample True True True True True
Dropout 0.3 0.3 0.3 0.3 0.3
Batch Size 128 128 128 128 128
Distillation Iterations 200K 200K 200K 200K 200K
Learning Rate 1e-4 1e-4 1e-4 1e-4 1e-4
Early Stop True True True True True
⇢ 0.4 0.4 0.4 0.4 0.4

Table 8. Hyperparameters for CNN diffusion models of various architectures on CIFAR10.

CIFAR10 32 FFHQ 256

Data-Based Training Ours Data-Based Training Ours

Training Time per 100 Iterations 18.00s 19.17s 68.77s 55.52

Table 9. Training speed comparison for CIFAR10 (pixel space) and FFHQ 256 (latent space) on a single A100 GPU. Data-free and data-
based training yield equivalent results.

0.004 0.04 0.1 0.2 0.3 0.4
0

2

4

6

8

10

M
em

or
y

(G
B

)

ρ

 Dynamic Iterative Distillation
 Data-Based Training

4.63

(a) CIFAR10 32

0.04 0.4 1 2 3 4
5

10

15

20

25

30

M
em

or
y

(G
B

)

ρ

23.85

 Dynamic Iterative Distillation
 Data-Based Training

(b) FFHQ 256

Figure 7. GPU memory occupied during training on CIFAR10 in
pixel space and FFHQ 256 in latent space. Data-free and data-
based training yield equivalent results.

Model Size Layers N Patch Size Hidden size d Heads

19M 7 2 384 6

Table 10. Hyperparameters for ViT-based diffusion models.

indicated in Tab. 9, our method demonstrates faster training
speeds in latent space than data-based training.

11. Analysis: Random Discard

During our exploration, we discovered that the utilization of
the Random Discard technique proves to be a straightfor-
ward yet highly effective approach for enhancing the dis-
tillation process. The idea behind it involves the random
elimination of some batch of noisy samples generated by
the teacher model during the iterative distillation. For in-
stance, in iterative distillation during the initial five train-
ing iterations, batches B̂1, B̂3, B̂4 may be discarded, while
B̂2, B̂5 are utilized for the student’s learning.

We present an analysis of the impact of random discard-
ing in our devised methodologies. Specifically, we intro-
duce the parameter p to denote the probability of discarding
certain noisy samples. Subsequently, we apply varying dis-
card probabilities to the iterative distillation, shuffled iter-
ative distillation, and dynamic iterative distillation, and as-
sess their respective performance alterations over a training
duration of 200k iterations without early stop.

The outcomes are presented in Fig. 8. It is noteworthy
that both iterative distillation and shuffled iterative distilla-
tion face limitations in constructing flexible batches, where
random discard emerges as a noteworthy solution to en-
hance their efficacy. Conversely, for dynamic iterative dis-
tillation, when ⇢ attains a sufficiently large value, it be-

5 10 15 20
0

10

20

30

40

50

60

70

FI
D

Training Iterations (k)

(a) Iterative Distillation

5 10 15 20
5

10

15

20

25

30

35

40

FI
D

Training Iterations (k)

(b) Shuffled iterative distillation

5 10 15 20
6

8

10

12

14

16

18

FI
D

Training Iterations (k)

(c) Dynamic iterative distillation with ⇢ = 0.05

5 10 15 20
6

8

10

12

14

16

18

FI
D

Training Iterations (k)

(d) Dynamic iterative distillation with ⇢ = 0.4

Figure 8. Effect of random discard on our iterative distillation, shuffled iterative distillation and dynamic iterative distillation without early
stop. Random discard can not improve our dynamic iterative distillation with ⇢ = 0.4 and thus removed from our final method.

comes apparent that random discard fails to confer addi-
tional advantages. This observation underscores the inher-
ent stability of our dynamic iterative distillation method and
we ultimately omitted random discard from the final imple-
mentation. This is beneficial because of its inefficiency in
requiring the teacher model to prepare a larger number of
noisy samples.

12. Discussion and Future Work
The primary concept of our proposed DKDM paradigm is
illustrated in Fig. 9. In this paradigm, the teacher DM ✓T ,
is trained on a real dataset D, which follows the distribution
D

0. There are two critical relationships between D and D
0.

First, the distribution D
0 of a well-trained teacher closely

approximates D. Second, the FID scores, when computed
using D as a reference, correlate with those using D

0, as
demonstrated by the linear fitting in Fig. 9. This correlation
underpins the effectiveness of the DKDM paradigm. By
transferring the distribution D

0 from the teacher DM to a
lighter student DM, DKDM enables the student to generate
data whose distribution closely approximates D.

However, in practice, there is invariably some discrep-
ancy between D and D

0, limiting the performance of the

Student !!

Teacher !"

Distribution of !": "#

Real Dataset: "

DKDM Objective

FID − %!

FI
D
−
%

5 15

10

25
 FID Linear Fitting

Figure 9. The DKDM paradigm learns distribution D0 integrated
in teacher DMs, which may deviate from the original dataset D.

student model. We report these scores, denoted as FID0 and
sFID0, calculated over the distribution D

0 instead of D in
Tab. 11. The results indicate that the FID0 and sFID0 scores
of the student closely mirror those of the teacher, suggesting

FID sFID FID0 sFID0

Teacher 4.45 7.09 2.09 3.92

Data-Free Training 9.64 11.64 4.13 5.19
Dynamic Iterative Distillation 6.85 8.01 2.60 4.14

Table 11. Results on CIFAR10 calculated over the source D and
that over distribution D0 of ✓T . Here the architecture of the student
is the same as the teacher.

(6.62,2.96)

(9.56,4.45)

(10.67,8.38)

(11.95,9.56)

6 8 10 12
0

3

6

9

Te
ac

he
r F

ID

Student FID

Figure 10. The relationship between the performances of teacher
and student on CIFAR10.

effective optimization. Nevertheless, these scores are infe-
rior to those of the teacher, primarily due to the gap between
D and D

0. As illustrated by Fig. 10, the performance of stu-
dent is strongly related to that of the teacher. Therefore,
a potential solution to enhance DKDM involves improving
the generative capabilities of the teacher, which we leave as
a direction for future work.

Figure 11. Selected samples generated by our student model on CIFAR10 32⇥ 32.

Figure 12. Selected samples generated by our student model on CelebA 64⇥ 64.

Figure 13. Selected samples generated by our student model on ImageNet 32⇥ 32.

Figure 14. Selected samples generated by our student model on CelebA-HQ 256⇥ 256.

Figure 15. Selected samples generated by our student model on FFHQ 256⇥ 256.

	Introduction
	Preliminaries on Diffusion Models
	Data-Free Knowledge Distillation for Diffusion Models
	DKDM Paradigm
	DKDM Objective
	Efficient Collection of Knowledge

	Experiments
	Experiment Setting
	Main Results
	Ablation Study

	Related Work
	Conclusion
	Training and Sampling of DDPMs
	Hyperparameters
	Hyperparameters for Main Results
	Hyperparameters for Cross-Architecture Distillation
	Hyperparameters for Various Architectures

	Results on Various Architectures
	GPU Memory and Training Speed
	Analysis: Random Discard
	Discussion and Future Work

