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Supplementary Material

Overview:
• In Appendix A, we present the algorithms of JailNTL→

and explain how JailNTL integrates with white-box attack
methods.

• In Appendix B, we provide additional details on the ex-
perimental setup.

• In Appendix C, we conduct more experiments.
• In Appendix D, we discuss the assumption of the accessi-

bility of authorized data during attack.
• In Appendix E, we demonstrate the limitations of the pro-

posed JailNTL.

A. Algorithms
A.1. JailNTL→ Algorithm
JailNTL→ presents the basic JailNTL framework, which
incorporates only data-intrinsic disguising without model-
guided disguising. We present the algorithmic structure of
JailNTL→ in Algorithm 2.

Algorithm 2: Training JailNTL→

Data: A small partition of authorized domain data
Da; Part of unauthorized domain data Du.

Input: The pre-trained NTL model fntl; Initial
disguising models fd and f̂d; Initial
discriminators fc and f̂c; Number of training
epochs E.

1 for e = 1 to E do
2 Sample mini-batch Bu and Ba from Du and Du;
3 Generate disguised domain fd(Bu), f̂d(Ba),

f̂d(fd(Bu)), fd(f̂d(Ba));
4 Compute Ladv , Lr

adv , Lcs, Lr
cs with Eq. 1, 5, 3,

6 in the main paper;
5 Compute L by incorporating multiple losses

with Eq. 7 in the main paper;
6 Update parameters fd and f̂d by minimizing

Ltotal and update fc and f̂c by maximizing
Ltotal with Eq. 8 in the main paper;

7 end for;
Output: The well-trained f→

d

A.2. Training TransNTL with JailNTL
We integrate our black-box attack method, JailNTL, with
the state-of-the-art (SOTA) attack method, TransNTL [17].
The disguised domain data generated by JailNTL is utilized
to enhance TransNTL’s performance. Specifically, follow-

ing the implementation of TransNTL, we incorporate the
disguised domain as an unlabeled authorized domain and

use it to generate third-party domains
{
D̂g

s

}G

g=1
with di-

verse distribution shifts P from the disguised domain Ds,
where D̂g

s = {(pg(x), y) | pg → P, (x, y) ↑ Ds}. These
generated domains are then included in the calculation of
the impairment-repair self-distillation loss for each opti-
mization iteration. We present the algorithmic structure in
Algorithm 3.

Algorithm 3: Training TransNTL with JailNTL
Data: A small partition of authorized domain data

Da; Disguised unauthorized domain data Ds.
Input: Pre-trained NTL model fntl; Perturbation

collection P; Impairment-repair
self-distillation loss weight ωsd; Number of
training epochs E.

1 for e = 1 to E do
2 Sample mini-batches Ba and Bs from Da and

Ds, respectively;
3 Compute fine-tuning loss Lft using Ba and its

corresponding labels;
4 Generate third-party domains B̂a, B̂s from Ba,

Bs by applying perturbations from P;
5 Calculate self-distillation loss Lsd using Ba, B̂a,

Bs, and B̂s;
6 Compute impairment-repair fine-tuning loss

Lirft = ωsdLsd + Lft;
7 Update parameters of fntl by minimizing Lirft;

Output: Fine-tuned model f→
ntl

B. Experiment Detail
B.1. Baseline

For pre-trained NTL methods, we include all open-source
NTL methods as baselines, including the NTL [52] and
CUTI [53] methods. For attack NTL methods, we incor-
porate white-box attack methods which have the same data
setup as our JailNTL, including the basic fine-tuning meth-
ods FTAL and RTAL [1] and the state-of-the-art (SOTA)
method TransNTL [17]. For all the experiments, we use the
official implementations of NTL methods (NTL4, CUTI5)
and attack methods (FTAL, RTAL and TransNTL)6.

4https://github.com/conditionWang/NTL
5https://github.com/LyWang12/CUTI-Domain
6https://github.com/tmllab/2024_CVPR_TransNTL



B.2. Datasets
Following the NTL baseline [52, 53], we conduct experi-
ments on CIFAR10 [32], STL10 [8], and VisDA-2017 [41].
We present samples of these datasets as shown in Fig. 7.
Details of these datasets are as follows:
• CIFAR10 & STL10: The CIFAR10 dataset comprises

32↓32 color images in 10 classes, consisting of 6 ani-
mal classes and 4 vehicle classes. The STL10 dataset
contains 96↓96 color images in 10 classes, with a sim-
ilar class distribution to CIFAR10. We conduct experi-
ments on both CIFAR10 ↔ STL10 and STL10 ↔ CI-
FAR10 transfer tasks.

• VisDA-2017: VisDA-2017 is a simulation-to-real dataset
containing 12 classes with distinct training, validation,
and testing domains. The training images are synthetic
renderings of 3D models under various conditions, while
the validation images are collected from MSCOCO. We
conduct experiments on the VisDA-T ↔ VisDA-V.
Consistent with the NTL baseline [17, 52], we resize all

images to a resolution of 64↓64 pixels for the NTL tasks.

B.3. Implementation of the Disguising Network
We build the disguising model based on the ResNet [13, 61]
structure which consists of two downsampling layers, nine
residual blocks, and two upsampling layers, along with the
instance normalization layers. We apply a kernel size of
3 within the ResNet blocks and a kernel size of 7 in the
sampling layers, which allows for effective feature extrac-
tion. For the discriminators, we follow the PatchGAN of
the pix2pix [27] method for efficiency.

B.4. Optimization
For the optimization of JailNTL, we employ the Adam opti-
mizer with an initial learning rate of 0.0002. By employing
zero-order gradient estimation via finite difference approx-
imation [30], we apply model-guided loss to the disguising
model without back-propagating through the NTL model,
thereby following the setting of black-box attack.

C. More Experiment
We present more experimental results in this section. In
Appendix C.1, we present the model’s class balance and
confidence across various datasets, NTL models, and net-
work backbones. In Appendix C.2, we conduct an ablation
study on data-intrinsic disguising. In Appendix C.3, we
show the influence of hyperparameters on JailNTL. Then,
in Appendix C.4, we provide additional model visualiza-
tion results using t-SNE and GradCAM to analyze how Jail-
NTL affects the NTL model. Finally, in Appendices C.5
and C.6, we evaluate JailNTL on different backbones and
with less authorized domain data, demonstrating its effec-
tiveness across scenarios.

C.1. Confidence and Classification Balance Dis-
crepancies in NTL Models

This subsection presents a comprehensive analysis of the
confidence and classification balance discrepancies exhib-
ited by Non-Transferable Learning (NTL) models across
various scenarios. We examine these discrepancies be-
tween authorized and unauthorized domains under differ-
ent conditions, including diverse datasets (CIFAR10 [32],
STL10 [8], and VisDA [41]), distinct methods (NTL [52]
and CUTI [53]), and different network backbones (VGG,
VGGbn [47], and ResNet34 [13]). Our observations con-
sistently reveal significant differences in classification bal-
ance and confidence levels between authorized and unau-
thorized domains across all scenarios. These findings sup-
port the universality of our proposed model-guided disguise
approach, which leverages these discrepancies.

Class Balance As shown in Fig. 8, we observed that the
NTL model predicts unbalanced classes (preferring one or
two classes) on the unauthorized domain, while predict-
ing balanced classes on authorized domains. This phe-
nomenon was consistently observed across different back-
bones (VGG, VGGbn, and ResNet34) in various datasets,
including CIFAR10, STL10, and VisDA, for both NTL and
CUTI methods.

Confidence We employ two types of metrics to evaluate
the model’s confidence: maximum logits [17] (Eq. 16) and
the entropy of softmax logits [45] (Eq. 9 in the main pa-
per). Figs. 9 and 10 illustrate the distribution of confidence
for the NTL model, revealing a notable difference between
the unauthorized and the authorized domain across different
backbones (VGG, VGGbn, and ResNet34) in various tasks.

Ecf (x) = max(fntl(x)) (16)

C.2. More Ablation Studies
In this section, we conduct ablation studies to demonstrate
the effectiveness of data-intrinsic disguising in JailNTL.
The full data-intrinsic disguising includes a forward pro-
cess, a feedback network, and a bidirectional structure.

As shown in the Tab. 4, JailNTL with model-guided dis-
guising and only the forward process in data-intrisic dis-
guising (i.e., without the feedback network and bidirec-
tional structure, denoted as Forward) shows poor attack
performance. Then, adding feedback network to JailNTL
(denoted as + Feedback) improves attack performance,
with an increase in unauthorized domain accuracy from
14.9% to 49.2% in CIFAR10 ↔ STL10 CUTI task. Fur-
ther, the introduction of the bidirectional network to Jail-
NTL (denoted as Full) achieves the highest accuracy in the
unauthorized domain while maintaining performance in the
authorized domain.



CIFAR10

STL10

VisDA-T

VisDA-V

Figure 7. Examples of NTL tasks: From top to bottom, we present samples from CIFAR10, STL10, VisDA-Train, and VisDA-Validation
datasets. These datasets serve as authorized or unauthorized domains in NTL tasks, exhibiting distinct style differences. Specifically, both
CIFAR10 and STL10 contain photo-realistic or real-world images, with CIFAR10 having a lower resolution (32!32 pixels) compared to
STL10 (96!96 pixels). VisDA-T consists of 2D images synthesized from 3D models with diverse viewing angles and lighting variations,
while VisDA-V comprises photo-realistic or real-world photographs.

NTL: VGG13 NTL: VGG13bn NTL: ResNet34 CUTI: VGG13 CUTI: VGG13bn CUTI: ResNet34
(a) CIFAR10 → STL10

NTL: VGG13 NTL: VGG13bn NTL: ResNet34 CUTI: VGG13 CUTI: VGG13bn CUTI: ResNet34
(b) STL10 → CIFAR10

NTL: VGG19 NTL: VGG19bn NTL: ResNet34 CUTI: VGG19 CUTI: VGG19bn CUTI: ResNet34
(c) VisDA-T → VisDA-V

Figure 8. The analysis of class balance of NTL and CUTI across three different tasks. We present CIFAR10 → STL10 task in subfigure
(a), STL10 → CIFAR10 task in subfigure (b), and VisDA-T → VisDA-V task in subfigure (c). For each task, we show results for both
NTL and CUTI methods using different network architectures. We use green to represent the authorized domain, and red to represent the
unauthorized domain.

C.3. Influences of Hyperparameters

In this section, we analyze the influence of the hyperpa-
rameters ωcf and ωba in the JailNTL methods. These pa-
rameters control the importance of the confidence loss Lcf

(Eq. (10)) and class balance loss Lba (Eq. (13)), respec-
tively. To evaluate their impact, we conducted two sets of
experiments. First, we keep the value of ωba and assigned

values to ωcf from the set [0.5, 0.1, 0.05, 0.01, 0.005, 0.001,
0.0001]. Subsequently, we repeated the process by assign-
ing the values above to ωba. As illustrated in Fig. 11, the
performance of JailNTL remains stable across various val-
ues of ωcf and ωba. This stability demonstrates the robust-
ness of our method for these hyperparameters.



NTL: VGG13 NTL: VGG13bn NTL: ResNet34 CUTI: VGG13 CUTI: VGG13bn CUTI: ResNet34
(a) CIFAR10 → STL10

NTL: VGG13 NTL: VGG13bn NTL: ResNet34 CUTI: VGG13 CUTI: VGG13bn CUTI: ResNet34
(b) STL10 → CIFAR10

NTL: VGG19 NTL: VGG19bn NTL: ResNet34 CUTI: VGG19 CUTI: VGG19bn CUTI: ResNet34
(c) VisDA-T → VisDA-V

Figure 9. The maximum logits of NTL and CUTI in three different tasks. We employ maximum logits as a metric to assess the model’s
confidence. We present CIFAR10 → STL10 task in subfigure (a), STL10 → CIFAR10 task in subfigure (b), and VisDA-T → VisDA-V
task in subfigure (c). For each task, we show results for both NTL and CUTI methods using different network architectures. We use green
to represent the authorized domain and red to represent the unauthorized domain.

NTL: VGG13 NTL: VGG13bn NTL: ResNet34 CUTI: VGG13 CUTI: VGG13bn CUTI: ResNet34
(a) CIFAR10 → STL10

NTL: VGG13 NTL: VGG13bn NTL: ResNet34 CUTI: VGG13 CUTI: VGG13bn CUTI: ResNet34
(b) STL10 → CIFAR10

NTL: VGG19 NTL: VGG19bn NTL: ResNet34 CUTI: VGG19 CUTI: VGG19bn CUTI: ResNet34
(c) VisDA-T → VisDA-V

Figure 10. The confidence (entropy) of NTL and CUTI in three different tasks. We employ the entropy of softmax logits as a metric to
assess the model’s confidence. We present CIFAR10 → STL10 task in subfigure (a), STL10 → CIFAR10 task in subfigure (b), and VisDA-
T → VisDA-V task in subfigure (c). For each task, we show results for both NTL and CUTI methods using different network architectures.
We use green to represent the authorized domain and red to represent the unauthorized domain. Due to the significant differences in entropy
distribution between the validation domain and the unvalidated domain, we apply a logarithmic scale for the density axis to clearly display
the distributions of both.



Table 4. Ablation Studies of Data-intrinsic Disguising. We present
authorized domain accuracy (%) in black, and unauthorized do-
main accuracy (%) in red. Change vs pre-trained NTL models are
shown in brackets. “Full” represents the model-guided disguising
and complete data-intrinsic disguising approach, which incorpo-
rates both the forward process and the feedback network, as well
as a bidirectional structure.

Domain NTL Pre-Train Forward + Feedback Full

CIFAR10
↑

STL10

NTL 85.6 23.4 (-62.2) 30.5 (-55.1) 81.2 (-4.4)
9.8 28.3 (+18.5) 25.5 (+15.7) 61.4 (+51.6)

CUTI
domain

85.8 27.5 (-58.3) 75.9 (-9.9) 82.5 (-3.3)
9.0 14.9 (+5.9) 49.2 (+40.2) 64.7 (+55.7)

STL10
↑

CIFAR10

NTL 84.5 21.6 (-62.9) 60.5 (-24.0) 83.7 (-0.8)
11.0 10.9 (-0.1) 16.1 (+5.1) 39.8 (+28.8)

CUTI
domain

88.3 16.3 (-72.0) 78.8 (-9.5) 85.6 (-2.7)
9.9 10.0 (+0.1) 11.3 (+1.4) 43.5 (+33.6)

VisDA-T
↑

VisDA-V

NTL 93.0 73.8 (-19.2) 89.8 (-3.2) 91.5 (-1.5)
6.7 9.1 (+2.4) 14.8 (+8.1) 21.7 (+15.0)

CUTI
domain

94.7 82.7 (-12.0) 92.0 (-2.7) 93.6 (-1.1)
10.1 8.5 (-1.6) 17.3 (+7.2) 25.4 (+15.4)
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(a) CIFAR10 → STL10
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(b) VisDA-T → VisDA-V

Figure 11. Influence of ωcf and ωba

C.4. More Visualization Analysis
In this section, we present extended visualizations to illus-
trate further the effects of JailNTL on the NTL model’s
attention and feature space representation on different do-
mains. We employ Gradient-weighted Class Activation
Mapping (GradCAM [44]) to visualize the attention and t-
distributed Stochastic Neighbor Embedding (t-SNE [49]) to
represent the NTL feature space. These visualizations are
extended to encompass various domains for both NTL and
CUTI methods, providing a more comprehensive analysis
of our approach’s performance.

t-SNE Feature Visualization. As shown in Fig. 12, we
observe a clear separation between the authorized (green)
and unauthorized (red) domains, indicating a significant do-
main gap that typically hinders knowledge transfer. No-
tably, the disguised domain samples (blue) consistently

(a) CIFAR10 → STL10 NTL (b) CIFAR10 → STL10 CUTI

(c) VisDA-T → VisDA-V NTL (d) VisDA-T → VisDA-V CUTI

Figure 12. t-SNE visualization in different tasks. We present data
from the authorized domain as green, data from the unauthorized
domain as red, and data from the disguised domain as blue.

cluster closely with the authorized domain samples while
remaining distinctly separate from the unauthorized do-
main. This visualization provides compelling evidence
for the effectiveness of JailNTL. By generating the dis-
guised domains that closely align with the authorized do-
main’s distribution, JailNTL successfully jailbreaks the
non-transferability barrier.

GradCAM Attention Visualization. We visualize the ef-
fect of JailNTL on the NTL model’s attention using Grad-
CAM [44]. As shown in Fig. 13, The first row of the subfig-
ure presents the input images, comprising samples from the
original authorized, unauthorized, and disguised domains.
The second row of the subfigure depicts the model’s atten-
tion using GradCAM, where cooler colors (blue) denote ar-
eas of low attention, while warmer colors (red) highlight
regions of high attention. Through effective disguising, we
successfully altered the model’s attention in the disguised
unauthorized domain. The Grad-CAM visualizations re-
veal that the attention map for the disguised image closely
resembles that of the original authorized image, exhibiting
high attention to the object. This contrasts sharply with the
low attention observed on the object in the unauthorized im-
age. These findings demonstrate that the JailNTL method
successfully disguised the domain, manipulated the model’s
attention, and achieved an effective NTL attack.

C.5. Effectiveness of JailNTL with Fewer Autho-
rized Domain Data

In this section, we analyze the performance of JailNTL
compared to other attack methods when less (0.5%) au-
thorized domain data are available. As shown in Tab. 5,



Table 5. Attack the NTL by using RTAL, FTAL, TransNTL, and JailNTL with 0.5% of the authorized domain data. We represent authorized
domain accuracy(%) in black and the unauthorized domain accuracy (%) in red. The change in accuracy compared to the pre-trained model
is indicated in brackets. We evaluate both the accuracy increase in unauthorized domain and the performance drop in uthorized domain.
Best results are highlighted in red background and second-best in yellow . ω denotes white-box attacks and † indicates black-box attacks.

Domain NTL method Pre-trained RTALω FTALω TransNTLω JailNTL†

CIFAR10
→ STL10

NTL 85.6 61.3 (-24.3) 85.9 (+0.3) 74.6 (-11.0) 80.1 (-5.5)
9.8 9.7 (-0.1) 9.8 (+0.0) 22.5 (+12.7) 54.6 (+44.8)

CUTI
domain

85.8 66.9 (-18.9) 86.7 (+0.9) 76.4 (-9.4) 80.9 (-4.9)
9.0 9.1 (+0.1) 9.0 (+0.0) 60.6 (+51.6) 63.0 (+54.0)

STL10
→ CIFAR10

NTL 84.5 67.6 (-16.9) 84.9 (+0.4) 66.2 (-18.3) 83.0 (-1.5)
11.0 10.9 (-0.1) 11.0 (+0.0) 29.1 (+18.1) 38.8 (+27.8)

CUTI
domain

88.3 79.0 (-9.3) 88.2 (-0.1) 76.1 (-12.2) 86.4 (-1.9)
9.9 10.7 (+0.8) 9.9 (+0.0) 57.0 (+47.1) 44.9 (+35.0)

VisDA-T
→ VisDA-V

NTL 93.0 85.1 (-7.9) 93.0 (+0.0) 65.6 (-27.4) 90.9 (-2.1)
6.7 7.0 (+0.3) 6.7 (+0.0) 10.8 (+4.1) 20.9 (+14.2)

CUTI
domain

94.7 93.6 (-1.1) 95.2 (+0.5) 84.6 (-10.1) 93.8 (-0.9)
10.0 11.3 (+1.3) 10.4 (+0.4) 29.2 (+19.2) 20.7 (+10.7)

NTL Model
Attention

Input
Image

Authorized
(CIFAR10)

Unauthorized
(STL10)

Disguised
(CIFAR10)

Disguised
(STL10)

(a) CIFAR10 → STL10

NTL Model
Attention

Input
Image

Authorized
(VisDA-T)

Unauthorized
(VisDA-V)

Disguised
(VisDA-T)

Disguised
(VisDA-V)

(b) VisDA-T → VisDA-V

Figure 13. Visualization of JailNTL’s effect on model attention
using GradCAM.

JailNTL effectively recovers performance in the unautho-
rized domain for all tasks, achieving an increase of up to
44.8% in NTL and up to 54.0% in CUTI. Meanwhile, it suc-
cessfully maintains performance in the authorized domain,
with minimal decreases of only 1.5% in NTL and 0.9% in
CUTI. In contrast, existing fine-tuning methods (RTAL and
FTAL [1]) fail to recover performance in unauthorized do-
mains for both NTL and CUTI. The SOTA white-box at-
tack TransNTL [17] can partially recover the performance
of unauthorized domains, while presents a significant de-
crease in the performance of the authorized domain. Over-
all, our black-box attack JailNTL still outperforms existing
white-box attack baselines with access to only 0.5% of au-
thorized domain data.

C.6. Effectiveness of JailNTL Across Backbones
In this section, we present the performance of JailNTL on
various backbone architectures (VGGbn [47], ResNet34,
and WRN502 [13]), extending beyond the VGG results
presented in the main paper. As shown in Tab. 6, Jail-
NTL maintains stable performance across different back-
bone networks. Specifically, JailNTL effectively improves
performance in the unauthorized domain across various
NTL backbones while maintaining performance in the au-
thorized domain, thereby demonstrating its effectiveness to
diverse NTL network architectures.

Table 6. Effectiveness of JailNTL on Various Backbones. We
present authorized domain accuracy (%) in black, and unautho-
rized domain accuracy (%) in red. Change vs pre-trained NTL
models are shown in brackets.

Domain NTL VGG VGGbn ResNet34 WRN502

CIFAR10
↑

STL10

NTL 81.2 (-4.4) 76.4 (-6.5) 81.9 (-3.8) 85.2 (-3.2)
61.4 (+51.6) 49.2 (+39.8) 61.9 (+52.0) 68.2 (+58.1)

CUTI
domain

82.5 (-3.3) 82.6 (-6.3) 80.0 (-2.4) 84.0 (-2.3)
64.7 (+55.7) 61.9 (+41.5) 60.1 (+55.7) 64.0 (+50.3)

VisDA-T
↑

VisDA-V

NTL 91.5 (-1.5) 97.2 (-0.1) 94.5 (-0.2) 95.4 (-1.4)
21.7 (+15.0) 21.6 (+13.2) 14.3 (+5.7) 19.0 (+12.5)

CUTI
domain

93.6 (-1.1) 96.5 (-0.3) 87.6 (-1.0) 90.0 (-1.4)
25.4 (+15.4) 19.1 (+8.7) 17.7 (+14.3) 17.9 (+10.9)

D. Discussion of the Data Accessibility

When attack, we follow [17] to assume that attackers can
access a small part of authorized data. We argue this as-
sumption is true and practical in black-box scenario.

As illustrated in Sec. 1 and Fig. 1(a), NTL aims to es-
tablish a “non-transferable barrier” [17, 19, 53] to restrict
the model’s generalization from an authorized domain to an
unauthorized domain. In this way, NTL can protect model
IP by preventing unauthorized usage, such as applications
on illegal data or in unapproved environments.

Usually, in black-box scenario (e.g., online APIs [21]),
only the authorized users can (i) access some authorized
data and (ii) have the access to use the black-box NTL
model at the same time. However, the following situations
may still pose potential risks:
• Access stolen. Both (i) accesses to authorized data and

(ii) accesses to use the black-box NTL model can either
be intentionally leaked by authorized users or stolen by
thieves. In such situations, the unauthorized users who
obtain both the data and model access may try to crack the



authorization limitations of NTL models for any unautho-
rized data.

• Malicious authorized users. Even if we exclude the sit-
uation of access stolen, there still remains a risk that au-
thorized users try to crack the authorization limitations
to apply the NTL model to unauthorized data. That is,
authorized users act as attackers and try to jailbreak the
non-transferable barrier.

In above situations, the attackers (unauthorized users or au-
thorized users) can access a small part of authorized data.

E. Limitations
In this paper, we adopt the settings used in previous stud-
ies on black-box attacks [4], which allow attackers to ob-
tain logits from the NTL model. When attackers can only
access prediction labels, removing the confidence loss still
yields good performance (see in Sec. 4.3). Additionally, the
class balance loss in model-guided disguising is designed
for scenarios with class-balanced authorized and unautho-
rized domains. For unbalanced domain distributions, users
can omit this component without significantly compromis-
ing the model’s performance (as demonstrated in Sec. 4.3).
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