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Table I. Network configurations used in this paper. SW stands for “Shifted Window”, MSA and MCA for “Multihead Self-Attention” and
“Multihead Cross-Attention”, and Sp. Conv. for “Sparse Convolution”.

Network #Layer #Dim. #Head Block Arch. Special Modules #Param.

ES – – – – 3D Conv. U-Net 59.3M
DS – – – – 3D Conv. U-Net 73.7M
E 12 768 12 3D-SW-MSA + FFN 3D Swin Attn. 85.8M

DGS 12 768 12 3D-SW-MSA + FFN 3D Swin Attn. 85.4M
DRF 12 768 12 3D-SW-MSA + FFN 3D Swin Attn. 85.4M
DM 12 768 12 3D-SW-MSA + FFN 3D Swin Attn. + Sp. Conv. Upsampler 90.9M

GS-B (text ver.) 12 768 12 MSA + MCA + FFN QK Norm. 157M
GS-L (text ver.) 24 1024 16 MSA + MCA + FFN QK Norm. 543M
GS-XL (text ver.) 28 1280 16 MSA + MCA + FFN QK Norm. 975M
GS-L (image ver.) 24 1024 16 MSA + MCA + FFN QK Norm. 556M
GL-B (text ver.) 12 768 12 MSA + MCA + FFN QK Norm. + Sp. Conv. Downsampler / Upsampler + Skip Conn. 185M
GL-L (text ver.) 24 1024 16 MSA + MCA + FFN QK Norm. + Sp. Conv. Downsampler / Upsampler + Skip Conn. 588M
GL-XL (text ver.) 28 1280 16 MSA + MCA + FFN QK Norm. + Sp. Conv. Downsampler / Upsampler + Skip Conn. 1073M
GL-L (image ver.) 24 1024 16 MSA + MCA + FFN QK Norm. + Sp. Conv. Downsampler / Upsampler + Skip Conn. 600M

A. More Implementation Details
A.1. Network Architectures
The networks used in our method primarily consist of trans-
formers [30], augmented by a few specialized modules. The
configurations and statistics for each network are listed in
Tab. I. In particular, ES and DS compose the VAE designed
for sparse structures, as discussed in Sec. 3.3 of the main
paper. The remaining networks are also defined in the main
paper. Below, we provide detailed descriptions of the archi-
tectures of the specialized modules introduced.

3D convolutional U-net. The VAE for sparse structures
(ES and DS) is introduced to enhance the efficiency of the
structure generator GS and to convert the binary grids of
active voxels into continuous latents for flow training. Its
architecture is similar to the VAEs in LDM [25], but it
employs 3D convolutions and omits self-attention metch-
anisms. ES (DS) consists of a series of residual blocks
and downsampling (upsampling) blocks, reducing the spa-
tial size from 643 to 163. The feature channels are set to
32, 128, 512 for spatial sizes of 643, 323, 163, respectively.
The latent channel dimension is set to 8. We utilize pixel
shuffle [27] in the upsampling block and replace group nor-
malizations with layer normalizations.

3D shifted window attention. In the VAE for structured
latents (SLAT), we employ 3D shifted window attention
to facilitate local information interaction and improve ef-
ficiency. Specifically, we partition the 643 space into 83

windows, with tokens inside each window performing self-
attention independently. Despite the potential variation in
the number of tokens per window, this challenge can be ef-
ficiently addressed using modern attention implementations

(e.g., FlashAttention [6] and xformers [17]). The trans-
former blocks alternate between non-shifted window atten-
tion and window attention shifted by (4, 4, 4), ensuring that
the windows in adjacent layers overlap uniformly.

QK normalization. Similar to the challenges reported in
SD3 [9], we encounter training instability caused by the ex-
ploding norms of queries and keys within the multi-head
attention blocks. To mitigate this issue, we follow [9] to
apply root mean square normalizations [33] (RMSNorm) to
the queries and keys before sending them into the attention
operators.

Sparse convolutional downsampler/upsampler. In DM

and GL, it is necessary to alter the spatial size of sparse ten-
sors to increase the resolution of the SDF grid for meshes
and to improve the efficiency of the SLAT generator, re-
spectively. To achieve this, we employ downsampling and
upsampling blocks equipped with sparse convolutions [31].
These blocks are composed of residual networks with two
sparse convolutional layers, skip connections with optional
linear mappings, and pooling or unpooling operators. We
use average pooling and nearest-neighbor unpooling. For
GL, given that the structures of 643 are pre-determined, we
only average the features from active voxels within each 23

pooling window and recover the 643 structures during un-
pooling. This is done by assigning values to active voxels
from their nearest neighbors in the 323 space. For DM,
we simply subdivide each voxel into 23, resulting in a new
sparse tensor with doubled spatial dimensions in each up-
sampling block.



A.2. Training Details
We provide more details about the training process for each
model, including hyperparameter tuning, algorithm details,
and loss function designs.

Sparse structure VAE. We frame the training of the
sparse structure VAE as a binary classification problem,
given the binary nature of the active voxels. Each decoded
voxel is classified as either positive (active) or negative (in-
active). Due to the imbalance between positive and negative
labels, where active voxels are sparser than inactive ones,
we adopt the Dice loss [21] to effectively manage this dis-
parity.

Structured latent VAE. For the versatile decoding of
SLAT, we implement decoders for various 3D representa-
tions, namely DGS for 3D Gaussians [13], DRF for Radi-
ance Fields [20], and DM for meshes. We provide detailed
information on their respective training processes.

(a) 3D Gaussians. Following Mip-Splatting [32], we ad-
dress aliasing by setting the minimal scale for Gaussians to
9e − 4 and the variance of the screen space Gaussian filter
to 0.1. The value 9e − 4 is derived from the assumption
of a 5123 sampling rate within the (−0.5, 0.5)3 cube. For
each active voxel, 32 Gaussians are predicted (i.e., K = 32
in the main paper). Since original density control schemes
are not applicable when Gaussians are predicted by neu-
ral networks, we employ regularizations for volume [18]
and opacity of the Gaussians to prevent their degeneration,
specifically to avoid them becoming excessively large or
transparent. The full training objective is:

LGS = Lrecon + Lvol + Lα, (I)

where Lrecon, Lvol and Lα are defined below:
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sent the CP-decomposition [3] of a local 83 radiance vol-
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The last dimension of V , which has a size of 4, contains the
color and density information. We set the rank R = 16.

The recovered local volumes are then assembled accord-
ing to the position of their respective active voxels, forming
a 5123 radiance field. Additionally, we implement an ef-
ficient differentiable renderer using CUDA, which enables
real-time rendering by integrating sorting, ray marching, ra-
diance integration, and the CP reconstruction into a single
kernel. The training objective of DRF is Lrecon as defined
in Eq. (II).

(c) Meshes. Erratum: We apologize for the typo in Eq. (4)
in the main paper regarding the output attributes of DM.
The correct dimensions for wj

i and dj
i should be 45 and 8,

respectively. Below, we provide detailed information about
the mesh decoding process.

We increase the spatial size of sparse structures from 643

to 2563, by appending two aforementioned sparse convolu-
tional upsamplers after the transformer backbone. For DM,
although our primary focus is on shape (geometry), we also
predict colors and normal maps for the meshes. As a result,
the final output for each high-resolution active voxel is:
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i ) are the flexible parameters de-

fined in FlexiCubes [26], where αj
i ∈ R8 and βj

i ∈ R12

are interpolation weights per voxel, γj
i ∈ R is the splitting

weights per voxel, and δji ∈ R8×3 is per vertex deformation
vectors of the voxel. In addition, dj

i ∈ R8 is the signed dis-
tance values for the eight vertices of the voxel, cji ∈ R8×3

denotes vertex colors, and nj
i ∈ R8×3 represents vertex

normals. Since each vertex is connected to multiple voxels,
we derive the final vertex attributes (i.e., δ, d, c, and n) by
averaging the predictions from all associated voxels.

To simplify implementation, we attach the sparse struc-
ture to a dense grid for differentiable surface extraction us-
ing FlexiCubes. For all inactive voxels in the dense grid,
we set their signed distance values to 1.0 and all other asso-
ciated attributes to zero. We then extract meshes from the
0-level iso-surfaces of the dense grid. For each mesh ver-
tex, its associated attributes (i.e., c and n) are interpolated
from those of the corresponding grid vertices. We utilize
Nvdiffrast [16] to render the extracted mesh along with its
attributes, producing a foreground mask M , a depth map
D, a normal map Nm directly derived from the mesh, an
RGB image C, and a normal map N from the predicted
normals. The training objective is then defined as follows:

LM = Lgeo + 0.1Lcolor + Lreg, (V)

where Lgeo and Lcolor are written as:

Lgeo = L1(M)+10LHuber(D) + Lrecon(Nm),

Lcolor =Lrecon(C) + Lrecon(N).
(VI)



Table II. Ablation study on timestep sampling distributions.

Distribution CLIP↑ FDdinov2 ↓

Stage 1 logitNorm(0, 1) 26.03 287.33
logitNorm(1, 1) 26.37 269.56

Stage 2 logitNorm(0, 1) 26.61 242.36
logitNorm(1, 1) 26.61 240.20

Here, Lrecon is defined identically to Eq. (II). Finally, Lreg

consists of three terms:

Lreg = Lconsist + Ldev + 0.01Ltsdf , (VII)

where Lconsist penalizes the variance of attributes associ-
ated with the same voxel vertex, Ldev is a regularization
term defined in FlexiCubes to ensure plausible mesh extrac-
tion, and Ltsdf enforces the predicted signed distance values
d to closely match the distances between grid vertices and
the extracted mesh surface, helping to stablize the training
process in its early stages.

Rectified flow models. We employ rectified flow mod-
els GS and GL for sparse structure generation and
structured latent generation, respectively. During train-
ing, we alter the timestep sampling distribution, replac-
ing the logitNorm(0, 1) distribution used in SD3 with
logitNorm(1, 1). We evaluate their performance at each
stage of our generation pipeline using the Toys4k dataset.
As shown in Tab. II, the latter provides a better fit for our
task and we set it as the default setting.

B. Data Preparation Details
Recognizing the critical importance of both the quantity and
quality of training data for scaling up the generative models,
we carefully curate our training data from currently avail-
able open-source 3D datasets to construct a high-quality,
large-scale 3D dataset. Moreover, we employed state-of-
the-art multimodal model, GPT4o [1], to caption each 3D
asset, ensuring precise and detailed text descriptions. This
facilitates accurate and controllable generation of 3D assets
from text prompts. In the following sections, we will first
briefly introduce each 3D dataset utilized, and then provide
details about our data curation pipeline. In addition, we
provide a comprehensive explanation of both the caption-
ing process and our rendering settings.

B.1. 3D Datasets
Objaverse-XL [8]. Objaverse-XL is the largest open-
source 3D dataset, comprising over 10 million 3D objects
sourced from diverse platforms such as GitHub, Thingi-
verse, Sketchfab, Polycam, and the Smithsonian Institu-
tion. This extensive collection includes manually designed
objects, photogrammetry scans of landmarks and everyday
items, as well as professional scans of historic and antique
artifacts. Despite its large scale, Objaverse-XL is quite

noisy, containing a significant number of low-quality ob-
jects, such as those with missing parts, low-resolution tex-
tures, and simplified geometries. Therefore, we include
only the objects from Sketchfab (also known as Objaver-
seV1 [7]) and GitHub in our training dataset and perform a
thorough filtering process to clean the dataset.

ABO [5]. ABO includes about 8K high-quality 3D mod-
els provided by Amazon.com. These models are de-
signed by artists and feature complex geometries and high-
resolution materials. The dataset encompasses 63 cate-
gories, primarily focusing on furniture and interior deco-
ration.

3D-FUTURE [10]. 3D-FUTURE contains around 16.5K
3D models created by experienced designers for industrial
production, offering rich geometric details and informative
textures. This dataset specifically focuses on 3D furniture
shapes designed for household scenarios.

HSSD [14]. HSSD is a high-quality, human-authored syn-
thetic 3D scene dataset designed to test navigation agent
generalization to realistic 3D environments. It includes a
total of 14K 3D models, primarily assets of indoor scenes
such as furniture and decorations.

Toys4k [28]. Toys4k contains approximately 4K high-
quality 3D objects from 105 object categories, featuring a
diverse set of object instances within each category. Since
previous works have not utilized this dataset for training,
we leverage it as our testing dataset to evaluate the general-
ization of our model.

B.2. Data Curation Pipeline
To ensure high-quality training data, we implement a sys-
tematic curation process. First, we render 4 images from
uniformly distributed viewpoints around each 3D object.
We then employ a pretrained aesthetic assessment model 1

to evaluate the quality of each 3D asset. More specifically,
we assess the average aesthetic score across 4 rendered view
for each 3D object. We empirically find this scoring mecha-
nism can effectively identify objects with poor visual qual-
ity – those that receive low aesthetic scores typically ex-
hibit undesirable characteristics such as minimal texturing
or overly simplistic geometry. We visualize the distribu-
tion of aesthetic scores in each dataset in Fig. I, and fur-
ther provide some examples in Fig. II to illustrate the cor-
respondance between the quality of 3D assets and their aes-
thetic scores. By filtering out objects with average aesthetic
score below a certain aesthetic score threshold (i.e., 5.5 for
Objaverse-XL and 4.5 for the other datasets), we maintain
a high standard of geometric and textural complexity in our
dataset. After filtering, there are about 500K high-quality

1https://github.com/christophschuhmann/improved-aesthetic-predictor

https://github.com/christophschuhmann/improved-aesthetic-predictor
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Figure I. Distribution of aesthetic scores in each dataset.

Score: 2.32 Score: 3.84 Score: 4.91 Score: 5.24

Score: 5.85 Score: 6.04 Score: 6.29 Score: 7.03

Figure II. 3D asset examples from Objaverse-XL with their corre-
sponding aesthetic scores.

Table III. Composition of the training set and evaluation set.

Source Aesthetic Score Threshold Filtered Size

ObjaverseXL (sketchfab) 5.5 168307
ObjaverseXL (github) 5.5 311843

ABO 4.5 4485
3D-FUTURE 4.5 9472

HSSD 4.5 6670
All (training set) – 500777

Toys4k (evaluation set) 4.5 3229

3D objects left (more details listed in Tab. III), which com-
prise our training dataset.

B.3. Captioning Process
Current available captions [19] for 3D objects either suf-
fer from poor alignment with the objects they describe
or lack detailed descriptions [11], which hinders high-
quality text-to-3D generation. Therefore, we carefully
design a captioning process following [11] to make the
model generate precise and detailed text descriptions for
each 3D object. To be more specific, we first em-
ploy GPT4o to produce a highly detailed description
“<raw captions>” of the input rendered images. Sub-
sequently, GPT4o distills the crucial information from
“<raw captions>” into “<detailed captions>”, typically
comprising no more than 40 words. Additionally, we sum-
marize the “<detailed captions>” into varying-length text
prompts for augmentation in training. An illustration of the
entire captioning process can be found in Fig. III, which
also includes the prompts designed for GPT4o.

B.4. Rendering Process
For VAE training, we sample 150 cameras looking at the
origin with a FoV of 40◦, uniformly distributed across
a sphere with a radius of 2. We render the assets us-
ing Blender, with a smooth area lighting. For the image-
conditioned generation model, we render a different set of
images with augmented FoVs ranging from 10◦ to 70◦,
which serves as image prompts during training.

C. More Experiment Details
C.1. Evaluation Protocol
In the main paper, we conduct quantitative comparisons and
ablation studies using a series of numerical metrics. We
provide detailed protocols for their calculation below.

Reconstruction experiments. We randomly sample a
subset of 500 instances from the filtered Toys4k dataset,
which comprises 3,229 3D assets (see Tab. III), as the eval-
uation set to assess the reconstruction fidelity of different
latent representations. The evaluation is conducted in the
following two aspects.

(a) Appearance fidelity. For each instance, we randomly
sample one camera positioned on a sphere with a radius of
2, looking towards the origin with a FoV of 40◦. We cal-
culate PSNR and LPIPS between the rendered images from
the reconstructed 3D assets and the ground truth images,
and average the results as the final metrics. For 3DTopia-
XL [4], which focuses on PBR materials, we report the re-
construction fidelity of albedo maps.

(b) Geometry accuracy. We employ Chamfer Distance
(CD) and F-score of sampled point clouds to assess the
overall geometry accuracy, as well as PSNR and LPIPS for
rendered normal maps (i.e., PSNR-N and LPIPS-N) to eval-
uate surface details. Definitions for the point cloud metrics
are listed below:

• Chamfer Distance:

CD(X,Y ) =
1

|X|
∑
x∈X

min
y∈Y

∥x− y∥2

+
1

|Y |
∑
y∈Y

min
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∥y − x∥2.
(VIII)



• F-score:

FN =
∑

[min
y∈Y

∥x− y∥2 > r],

FP =
∑

[min
x∈X

∥y − x∥2 > r],

TP =|Y | − FP,

precision =
TP

TP + FP
,

recall =
TP

TP + FN
,

F-score(X,Y ) =
2 · precision · recall
precision + recall

.

(IX)

The point clouds used to assess the overall geometry accu-
racy (CD and F-score with r = 0.05) are sampled from the
outer surface of the reconstructed meshes. Specifically, we
render depth maps for each mesh from 100 uniformly sam-
pled views, with camera settings identical to that for appear-
ance evaluation. The depth maps are then unprojected to 3D
points. We randomly sample 100K points from all the 3D
points as the point clouds for evaluation.

For PSNR-N and LPIPS-N, as in the appearance metrics,
we calculate the mean values across 500 image pairs (ren-
dered results v.s. ground truth), with one pair per instance.

Generation experiments. For comparisons and ablation
studies regarding generation quality, we utilize two evalu-
ation sets: a subset of Toys4k with 1,250 randomly sam-
pled instances and a subset of the training set with 5,000
instances. We employ Fréchet Distance (FD) [12] and Ker-
nel Distance (KD) [2] with various feature extractors (i.e.,
Inception-v3 [29], DINOv2, and PointNet++ [23]) to assess
the overall quality of the generated outputs. Additionally,
the CLIP score [24] is used to evaluate the consistency be-
tween the generated results and the input prompts. For each
prompt in the evaluation set, we generate one asset using
the generation model and use these assets as the generated
set for metrics calculation. We provide detailed calculations
for each metric below.

(a) Appearance quality. We employ FDincep, KDincep,
FDdinov2, and KDdinov2 as evaluation metrics. For each
instance, we render 4 views using cameras with yaw an-
gles of {0◦, 90◦, 180◦, 270◦}, and a pitch angle of 30◦. All
other camera settings are consistent with those in the recon-
struction experiments. The rendered images are then used
to calculate different metrics. For Toys4k, we use 5,000 im-
ages each for both the real and rendered sets, while for the
training set, we use 20,000 images.

(b) Geometry quality. We utilize FDpoint. Following Point-
E [22], we prepare the point clouds by sampling 4,000
points from unprojected multiview depth maps using the
farthest point sampling technique.

Please describe the details of the 3D object, the detailed description will be used 

for a text to 3d model to generate this 3D object. Please provide details of the 

shape, color of each part, avoid imagination and solve it step by step. You do not 

need to describe the background.

<raw_captions>: The 3D object appears to be a stylized, medieval knight character 

standing in a T-pose, typically used in character modeling for animation and game 

design. Here is a detailed description of the character's features:

1. **Helmet**:

   - **Shape**: Bucket-style helmet with a flat top and a slight flare at the bottom.

   - **Color**: Silver/gray with signs of wear and tear.

2. **Upper Body**:

   - **Chest Armor**: Breastplate that covers the torso.

   - **Colors**: 

     - Primary: Red fabric with a blue and green emblem at the center.

     - Secondary: Silver shoulder pads on both sides.

   - **Additional Details**: Textured chainmail visible on the arms.

3. **Arms**:

   - **Upper Arms**: Covered in a combination of chainmail and fabric, 

resembling a tunic underneath the armor.

   - **Forearms**: Encased in silver bracers that match the helmet and shoulder 

pads.

   - **Hand Position**: Both hands are extended outward in a T-pose.

4. **Lower Body**:

   - **Tunic**:

     - **Shape**: Red fabric tunic extending from the waist to the mid-thigh.

     - **Color**: Same as the upper tunic with a visible blue vertical stripe on the 

sides.

   - **Leg Armor**:

     - **Shape**: Iron greaves over the calves.

     - **Color**: The same silver/gray as the helmet and bracers.

   - **Footwear**: 

     - **Shape**: Traditional medieval-style boots with straps and buckles.

     - **Color**: Dark brown.

5. **Belt**:

   - **Shape**: Simple, broad belt wrapped around the waist.

   - **Color**: Brown with a silver buckle.

These details should help in using a text-to-3D model to accurately recreate the 

knight character. The object is stylized, likely for a game or animation, with 

exaggerated features and simplified textures.

This is a hard problem. Carefully summarize in ONE caption aiming for **no 

more than 40 words** based on the following captions (possibly incorrect) by 

people describing the 3D object. The caption will be used for a text to 3D model to 

generate this 3D object. Ensure the summary is concise and captures the essential 

information without including any additional commentary or unnecessary details. 

Please avoid hallucination. Raw captions: <raw_captions>. Please directly output 

the detailed caption without extra text. Provide the caption in a simple, plain text 

format with no markdown, bullet points, or special formatting.

<detailed_captions>: Stylized medieval knight in T-pose with a worn silver bucket 

helmet, red tunic and chest armor with blue and green emblem, textured chainmail, 

silver shoulder pads, bracers and greaves, dark brown medieval boots, and a brown 

waist belt.

This is a hard problem. Carefully summarize the given caption describing the 3D 

object. The caption will be used for a text to 3D model to generate this 3D object. 

Ensure the summary is concise and captures the essential information without 

including any additional commentary or unnecessary details. Please avoid 

hallucination. Please give me TEN versions of the caption. ONE caption per line. 

The captions should be more and more brief. The first caption should be the most 

detailed and the last caption should be the most brief. The first caption should be 

about 12 words long and the last caption should describe ALL major objects in the 

scene AS SIMPLY AS POSSIBLE for at most 5 words. Please directly output the 

caption without extra text. Provide the caption in a simple, plain text format with 

no markdown, bullet points, numbering, or special formatting. Raw captions: 

<detailed_captions>

Medieval knight in T-pose, silver armor, red tunic, blue-green emblem, chainmail, 

and brown boots.

Medieval knight, silver gear, red tunic, blue-green emblem, chainmail.

Knight in T-pose, silver armor, red tunic, emblem, chainmail.

Knight with silver armor, red tunic, and chainmail.

Knight in T-pose, silver gear, and chainmail.

Medieval knight, silver armor, and tunic.

Knight with silver armor and chainmail.

Silver-armored knight with emblem.

Silver-armored medieval knight.

Armored knight.

Figure III. An example of our captioning process.

(c) Prompt alignment. We render 8 images per asset with
yaw angles at every 45◦, a pitch angle of 30◦, and a ra-
dius of 2. We calculate the cosine similarity between the
CLIP features of images from the generated assets and their
corresponding text or image prompts. The average of all
similarities (×100) is reported as the final CLIP score.



Figure IV. User interface used in our user study.

Table IV. Detailed statistics of the user study.

Method Text-to-3D Image-to-3D
Selections↑ Perentage↑ Selections↑ Perentage↑

Not Sure 56 4.2% 6 0.4%
Shap-E 42 3.1% 6 0.4%
LGM 70 5.2% 22 1.6%

InstantMesh 123 9.1% 30 2.2%
3DTopia-XL 5 0.4% 5 0.4%

Ln3Diff 9 0.7% 6 0.4%
GaussianCube 139 10.3% – –

Ours 905 67.1% 1277 94.5%

Total 1349 100% 1352 100%

C.2. User Study
We conducted a user study to evaluate the performance of
various methods based on human preferences. Participants
were presented with side-by-side comparisons of 3D assets
generated by different methods. In each trial, they were
given a text prompt or reference image, along with several
rotating videos of candidate 3D assets generated using dif-
ferent techniques. The interface, as depicted in Fig. IV, dis-
played the reference image at the top, followed by options
representing the generated 3D models. Participants were
asked to select the model that best matched the reference
image in terms of visual fidelity and overall quality, or they
could choose “Not sure” if they were unable to make a de-
cision. Each participant was assigned 50 trials, and their
selections were recorded for analysis.

To ensure a diverse and unbiased evaluation, we imple-
mented the following measures:

• The candidate 3D assets were not curated. Specifically,
we sampled once per text or image prompt and used
those samples directly in the study.

• The 50 trials for each participant were randomly se-
lected from a pool of 68 text-to-3D cases and 67
image-to-3D cases. The order of candidates in each
trial was also randomized.

We collected responses from 104 participants. In total,
2,701 trials were answered, with an average of 25.97 re-
sponses each. Detailed statistics are in Tab. IV.

D. More Results
D.1. 3D Asset Generation
We present additional examples of 3D assets generated by
our method. These include more text-to-3D results with AI-
generated prompts in Fig. V and more image-to-3D results
from both AI-generated images (Fig. VI) and real world im-
ages (Fig. VII). For real-world images, we use segmented
objects from SA-1B [15], which feature challenging mate-
rials, geometries, and camera views. Each 2× 3 grid shows
one generated asset, with front-left and back-right views in
the top and bottom rows. Rendered images with 3D Gaus-
sians (GS), Radiance Fields (RF), and meshes are displayed
from left to right.

D.2. More Comparisons
In Fig. VIII, we provide additional comparisons of 3D as-
sets generated by our method and those produced by alter-
native approaches described in the main paper.

Figure IX further compares our method with the
commercial-level 3D generation model, Rodin Gen-12, us-
ing its default image-to-3D generation setting. Our method
exhibits more detailed geometry structures on these com-
plex cases, while being trained solely on open-source
datasets and without commercial-specific designs.

D.3. 3D Editing
Figure X and XI present additional editing results, high-
lighting the flexible capabilities of our method to edit and
manipulate 3D assets.

D.4. 3D Scene Composition
Figure XII and XIII provide two supplementary visualiza-
tions of complex scenes constructed with assets from our
model, demonstrating its potential for production use.

E. Limitations and Future works
While our model demonstrates strong performance on 3D
generation, it still has some limitations. First, it uses a two-
stage generation pipeline for the structured latent represen-
tation, which first generates the sparse structures, followed
by the local latents on them. This approach can be less effi-
cient than end-to-end methods that create complete 3D as-
sets in a single stage.

Second, our image-to-3D model does not separate light-
ing effects in the generated 3D assets, resulting in baked-in
shading and highlights from the reference image. A poten-
tial improvement is to apply more robust lighting augmen-
tation for image prompts during training and enforce the
model to predict materials for Physically Based Rendering
(PBR), which we leave for future exploration.

2https://hyperhuman.deemos.com/rodin

https://hyperhuman.deemos.com/rodin


Ship with copper and brown
hues, intricate deck details.

A stylized, cartoonish rocket with a red dome top
and black antenna, teal cylindrical middle section

with red bands and black connectors.

A weather-worn vintage delivery van with
a boxy shape, a rusted faded green finish,

square windows, rusty roof rack.

A Victorian mansion made of stone
bricks with ornate trim, bay

windows, and a wraparound porch.

A wooden bookshelf with carved
details and adjustable shelves.

A wooden rocking chair with a
woven seat and back.

Vintage green computer monitor. Sci-fi inspired silver and blue toy
gun with intricate design.

The tree has stylized, rounded canopies
made up of layered, scale-like leaves in
shades of green. Its trunk is twisted.

The train carriage has a classic, vintage
design with a dark, rounded roof, teal

exterior, detailed windows, and red wheels.

Carved wooden chess piece. (queen) Ceramic mug with a crack.

Dark leather suitcase with brass latches. Geometric metal sculpture with angular edges. Rustic lantern with a flickering flame.

Figure V. More results generated by TRELLIS with AI-generated text prompts. (From left to right: GS, RF, and meshes)



Figure VI. More results generated by TRELLIS with AI-generated image prompts. (From left to right: GS, RF, and meshes)



Figure VII. More results generated by TRELLIS with real-world image prompts from SA-1B. (From left to right: GS, RF, and meshes)



N/A

A black and yellow
taxi cab with

checkered stripes
and a rooftop sign.

Bed with a wooden
frame and a plush

mattress.
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Exoskeleton suit with
hydraulic joints and
armored plating.

Figure VIII. More comparisons of generated 3D assets by our method and prior works, with AI-generated text and image prompts.



OursRodin Gen-1

Figure IX. Comparisons between our method and a commercial-level 3D generation model, Rodin Gen-1 (with its default image-to-3D
setting). Image prompts are generated by DALL-E 3. Our method exhibits more detailed geometry structures, while being trained solely
on open-source datasets without commercial-specific designs.



Original Assets

Rugged, metallic
texture with orange

and white paint
finish, suggesting a
durable, industrial

feel.

Knitted, fabric-like
texture with green
and purple colors,
featuring playful

details.

Rugged, metallic
with leather straps
and a blue accent,

resembling a
medieval weapon.

Transparent, glass-
like structure,

suggesting a high-
tech design.

Figure X. More examples of asset variations using TRELLIS. (Left: GS; Right: meshes)

Original Assets A flat roof. A steeply sloped roof. A pointed cone roof. A-frame roof with tower Lush green roof,
covered in vegetation

Figure XI. More examples of local editing, replacing the roof of the given building asset.



Wooden and iron chest. Wooden crate. Phonograph.Round dark wooden table.

Figure XII. A dwarf blacksmith shop constructed with assets generated by TRELLIS. (Text and image prompts are linked with yellow lines)

Street tree.

Two-story rectangular urban building
with flat orange roof, teal façade.

Black metal streetlamp
with yellow light.

Red sports car.

Police officer with a blue
uniform, casual style.

Figure XIII. A vibrant streetview constructed with assets generated by TRELLIS. (Text and image prompts are linked with yellow lines)



References
[1] Gpt-4o system card. 2024. 3
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