
COAP: Memory-Efficient Training with Correlation-Aware Gradient Projection

Supplementary Material

1. Detailed Proposed Method
Notation. In this paper, we use the following notation con-
ventions: Matrices and vectors are indicated with boldface
capital and lowercase letters, e.g., X and x, respectively.
Tensors are represented using boldface calligraphic script,
denoted as X .

1.1. Inter-projection Correlation-aware Pt Update.

Considering the importance of incorporating the informa-
tion from the previous projection into the current update, we
propose calculating Pt via solving the optimization prob-
lem:

min
Pt

MSE(Ĝt,Gt)︸ ︷︷ ︸
reconstruction term

(1− CosSim(M̂t−1,Gt))︸ ︷︷ ︸
direction term

, (1)

where CosSim(·, ·) and MSE(·, ·) return the cosine similar-
ity and mean squared error, respectively. To simplify nota-
tion, the notation without the subscript t represents a gen-
eral form of the optimization problem, i.e.,

min
P

MSE(Ĝ,G)︸ ︷︷ ︸
reconstruction term

(1− CosSim(M̂ ,G))︸ ︷︷ ︸
direction term

, (2)

where P ∈ Rn×r, Ĝ ∈ Rm×n = GPP⊤ and M̂ ∈
Rm×n = MprojP⊤ are the full-rank estimates of gradient
and first-order moment projected back from the low-rank
subspace, respectively. Notably, the reconstruction term is
introduced to minimize the reconstruction error for gradi-
ents incurred by projection – achieving the similar goal that
SVD essentially aims for, and direction term encourages the
consistency of optimization direction after restoring from
low-rank subspace.

To solve Eqn. 2 as a non-convex optimization problem,
we propose using stochastic gradient descent to iteratively
update Pt as follows:

P :=P − η(
∂MSE(Ĝ,G)

∂P
(1− CosSim(M̂ ,G)+

∂CosSim(M̂ ,G)

∂P
MSE(Ĝ,G)).

(3)

Here, η represents learning rate, set to 0.1 by default.
The gradient expressions for the reconstruction term and the
direction term are derived as follows:

Gradient of Reconstruction term (MSE).

∂MSE(Ĝ,G)

∂P
=

∂

∂P

(
1

mn
tr((Ĝ−G)⊤(Ĝ−G))

)
=

2

mn
(Ĝ⊤GP − 2G⊤GP +G⊤ĜP),

(4)

where tr(·) represents the trace of a matrix.
Gradient of Direction Term (CosSim).
Given the cosine similarity between matrices M̂ and G,

defined as:

CosSim(M̂ ,G) =
1

m

m∑
i=1

CosSim(M̂i,Gi)

=
1

m

m∑
i=1

⟨M̂i,Gi⟩
∥M̂i∥∥Gi∥

.

(5)

Applying the chain rule to compute the gradient of
CosSim(M̂ ,G) with respect to P :

∂CosSim(M̂ ,G)

∂P
= (

∂CosSim(M̂ ,G)

∂M̂
)⊤

∂M̂

∂P

=
1

m

m∑
i=1

(
∂CosSim(M̂ ,G)

∂M̂i

)⊤Mproj
i

=
1

m

m∑
i=1

(
Gi

∥M̂i∥∥Gi∥
− M̂i⟨M̂i,Gi⟩

∥M̂i∥3∥Gi∥
)⊤Mproj

i ,

(6)

where ∥ · ∥ represents the Euclidean norm, ⟨·, ·⟩ denotes
the inner product, M̂i,Gi,M

proj
i denotes the i-th row of

M̂ ,G,Mproj.
Incorporating the gradient expressions above, we derive

the final update formula for P as follows:

P :=P − η(
2

mn
(Ĝ⊤GP − 2G⊤GP +G⊤ĜP)

(1− 1

m

m∑
i=1

⟨M̂i,Gi⟩
∥M̂i∥∥Gi∥

)+

1

m

m∑
i=1

(
Gi

∥M̂i∥∥Gi∥
− M̂i⟨M̂i,Gi⟩

∥M̂i∥3∥Gi∥
)⊤Mproj

i

1

mn
tr((Ĝ−G)⊤(Ĝ−G))).

(7)

1.2. Theory Analysis.

COAP proposes to approximately keep the same low-rank
subspace across iterations. Intuitively, this requires the low-
rank subspace to remain stable across iterations, which can
be bounded in terms of the learning rate and Lipchitz con-
stant. Theoretical justification composed of the following
steps:
• Bounded update will lead to bounded change of the sub-

space.
• Equation 2 finds a subspace not much worse than the true

subspace.

We aim to demonstrate that this procedure guarantees an
approximation to the underlying true subspace. Let P ♮

t be
the true subspace. Let PMSE

t and P SIM
t be the solutions of

the MSE loss and CosSim loss respectively, then

PMSE
t = Pt−1

P SIM
t = argmax

〈
GtPt,M

proj
t−1

〉
,

(8)

where Mproj
t−1 = βMproj

t−2 +(1−β)P T
t Gt =

∑t−1
i=0 β

i(1−
β)P T

t−iGt−i, argmax ⟨·, ·⟩ maximizes an inner product be-
tween two entities. Therefore,

P SIM
t =

t−1∑
i=0

βi(1− β)argmax
〈
P T

t Gt,P
T
t−iGt−i

〉
=

t−1∑
i=0

βi(1− β)Pt−i

(9)

Theorem 1.1. Assume that the gradient is Lipchitz with
respect to the weight with Lipchitz constant L. Assume
κ1

.
= σ1

σr+1
> 1 and κr

.
= σr

σr+1
> 1 to be the ratio between

the 1-th and r-th to the r+1-th singular value of the gradient
G respectively. Then the proposed procedure in Equation 2
recovers a subspace well approximating the true subspace.

∥∥∥Pt − P ♮
t

∥∥∥
F

≤ c(t mod (λ× Tu))
rκ1 +min(m,n)− r

κr − 1
Lη.

(10)

With learning rate η, Lipchitz property of the gradient
gives

∥Gt−1 −Gt∥2 ≤ L ∥Wt−1 −Wt∥2
= L

∥∥∥ηGproj
t−1

∥∥∥
2
≤ Lη ∥Gt−1∥2 .

(11)

Consequently, the optimal subspace P ♮
t is also close enough

to the previous optimal subspace P ♮
t−1:

∥∥∥P ♮
t−1 − P ♮

t

∥∥∥
F
≤ rκ1 +min(m,n)− r

κr − 1
Lη. (12)

When t mod (λ × Tu) = 0, the proposed algorithm up-
dates Pt = P ♮

t . Otherwise, we show that Pt highly approx-

imates P ♮
t ,∥∥∥Pt − P ♮
t

∥∥∥
F
≤

∥∥∥P ♮
t−1 − P ♮

t

∥∥∥
F
+
∥∥∥Pt − P ♮

t−1

∥∥∥
F

≤
∥∥∥P ♮

t−1 − P ♮
t

∥∥∥
F
+

∥∥∥PMSE
t − P ♮

t−1

∥∥∥
F
+

∥∥∥P SIM
t − P ♮

t−1

∥∥∥
F

≤
∥∥∥P ♮

t−1 − P ♮
t

∥∥∥
F
+ (2− β)

∥∥∥Pt−1 − P ♮
t−1

∥∥∥
F

+ (1− β)
∑
i=2

βi
∥∥∥Pt−i − P ♮

t−1

∥∥∥
F

≤
∥∥∥P ♮

t−1 − P ♮
t

∥∥∥
F
+ 2

∥∥∥Pt−1 − P ♮
t−1

∥∥∥
F

+ (1− β)
∑
i=2

βi ∥Pt−i − Pt−1∥F

≤ 2(t mod (λ×Tu))
rκ1 +min(m,n)− r

κr − 1
Lη

(13)

1.3. Hyper-parameter Settings.

Table 1 presents the detailed hyper-parameters used in all
experiments of COAP. Except for the Update Interval (Tu)
and Re-project Factor (λ) specific to COAP, all other pa-
rameters remain consistent with the corresponding base-
lines. The optimizer, rank settings, learning rate, GPU con-
figuration, and mixed precision are listed for each exper-
iment. Hyper-parameters for different models, including
LDM, SiT-XL/2, ControlNet SDXL, and LLaMA series, are
provided to ensure reproducibility.

1.4. Adafactor with COAP.

Adafactor is an adaptive gradient optimization algorithm
designed to reduce memory usage while maintaining train-
ing efficiency. Unlike Adam, which stores full-matrix
second-moment estimates, Adafactor factorizes the second-
moment accumulation to save memory, making it partic-
ularly suitable for training large-scale models. However,
first-moment remains crucial for stabilizing training and ac-
celerating convergence. Without it, optimization can be-
come unstable, especially in deep networks where gradi-
ents vary significantly. The first moment helps smooth up-
dates and improves the overall training dynamics. Algo-
rithm 1 describes the Adafactor-based training procedure,
by projecting the gradient and its first-moment estimate into
a lower-dimensional subspace, we effectively compress the
momentum while retaining its benefits. This approach al-
lows us to maintain training stability with reduced memory
overhead, making it highly efficient for large-scale models.

1.5. Extension to CONV Layer.

To enhance the generality and applicability of our algo-
rithm, it is essential to extend support to higher-dimensional
weight tensors, which are prevalent in architectures such as

Table 1. Table 1: Hyper-parameter settings for all experiments.

Optimizer Exprement
Rank
r

Rank Ratio
α

Update Interval
Tu

Re-project Factor
λ

Learning Rate
η

GPU Mixed-precision

Adafactor
(COAP)

Table 1. Pre-training LDM - 2 16 10 2× 10−5 8×V100 FP32

Table 2. Pre-training SiT-XL/2 512 - 200 5 1× 10−4 8×H100 FP16

Table 3. ControlNet SDXL
- 2 8 10 1× 10−5 8×H100 BF16
- 4 8 10 1× 10−5 8×H100 BF16
- 8 8 10 1× 10−5 8×H100 BF16

AdamW
(COAP)

Table 1. Pre-training LDM - 2 16 10 2× 10−5 8×V100 FP32

Table 2. Pre-training SiT-XL/2 512 - 30 10 1× 10−4 8×H100 FP16

Table 5. Pre-training LLaMA-1B 512 - 40 5 1× 10−2 8×H100 BF16

Table 5. Pre-training LLaMA-7B 1024 - 100 1 5× 10−3 8×H100 BF16

Table 6. Fine-tuning LLaVA-v1.5-7B - 4 32 1 2× 10−5 1×A100 BF16

Algorithm 1: Adafactor with COAP
Input: Weight matrix W ∈ Rm×n, Learning rate η, Rank r,

Betas [β1, β2], Update interval [λ, Tu], Decay rate γ.
Initialize: Mproj

0 ∈ Rm×r ← 0, V proj
0 ∈ Rm×r ← 0, t← 0

R0 ∈ Rm×1 ← 0, C0 ∈ R1×r ← 0.
Randomly Initialize: P0 ∈ Rn×r

Compute: P0 ← (P0,G0) ▷ Occasional Low-cost SVD
for t in [1, 2, · · ·] do

Compute: gradient Gt of Wt in the loss function.
if t mod Tu = 0 then

if t mod (λ× Tu) = 0 then
▷ Occasional Low-cost SVD
Compute: Pt ← (Pt−1,Gt)

else
Update:Pt ← (Pt−1,Gt,Mt−1) ▷ Eqn. 2

else
Pt ← Pt−1

▷Project gradient and moments into low-rank space.
β2 ← 1− tγ

Gproj
t ← GtPt

Mproj
t ← β1M

proj
t−1 + (1− β1)G

proj
t

Rt = β2Rt−1 + (1− β2) · Sum(Gproj
t

2
,−1)

Ct = β2Ct−1 + (1− β2) · Sum(Gproj
t

2
,−2)

V̂t =
√

Mean(Rt,−1)
RtCt

▷Calculate the bias correction term in low-rank space.
∆W proj

t ← β1M
proj
t + (1− β1)ηV̂t ⊙Gproj

t

▷Restore ∆W proj
t to original space and update W .

Wt ←Wt−1 −∆W proj
t P⊤

t

Return: updated W

Convolutional Neural Networks (CNNs). While the most
straightforward approach would be to reshape CNN weights
into matrices and apply the same low-rank space construc-
tion method used for matrix operations, this naive strategy
would inevitably result in the loss of intrinsic spatial char-
acteristics inherent to CNNs [5].

For a convolutional layer with a weight tensor W ∈

RO×I×K1×K2 , where I and O are the number of input
channels and output channels, respectively, and K1 and K2

are the kernel sizes, we use Tucker-2 decomposition [7] as
the factorization method. In this scenario, W can be repre-
sented with a core tensor C and two factor matrices (U1 and
U2) along each mode as follows:

W = C ×1 U1 ×2 U2, (14)

where “×n” denotes the n-mode product. Specifically,
U1 ∈ RO×rO represents the left singular vectors of the
mode-1 unfolding of W , denoted as W(1), i.e., W(1) =

U1Σ1V
⊤
1 . Similarly, U2 ∈ RI×rI represents the left sin-

gular vectors of the mode-2 unfolding of W , denoted as
W(2), i.e., W(2) = U2Σ2V

⊤
2 . The core tensor C is ob-

tained by projecting W onto the subspaces spanned by U1

and U2, i.e.,

C = W ×1 U
⊤
1 ×2 U

⊤
2 , (15)

where C ∈ RrO×rI×K1×K2 . Here, rO and rI are the
Tucker-2 tensor ranks, determining the dimensionality of
the factor matrices and the core tensor. Initially, the val-
ues for U1, U2, and C are typically obtained using Higher-
Order Singular Value Decomposition (HOSVD) [1]. To
refine these initial values and achieve the final decompo-
sition, the Alternating Least Squares (ALS) [4] method is
employed. This iterative optimization technique alternates
between updating the core tensor C and the factor matrices
U1 and U2 to minimize the reconstruction error.

Algorithm 2 outlines the Adam-based training proce-
dure, integrating the proposed Pt update method for con-
volutional layers.

Typically, for a convolutional layer with a weight tensor
W ∈ RO×I×K1×K2 , I and O are significantly larger than
the kernel sizes K1 and K2 (i.e., I,O ≫ K1,K2). There-
fore, we propose using the format of Tucker-2 decompo-
sition to handle CNNs while employing our own decom-
position method for the actual factorization. According to

https://github.com/CompVis/latent-diffusion
https://github.com/sihyun-yu/REPA
https://github.com/CompVis/latent-diffusion
https://github.com/sihyun-yu/REPA
https://github.com/jiaweizzhao/GaLore
https://github.com/jiaweizzhao/GaLore
https://github.com/haotian-liu/LLaVA

Eq. 14 and Eq. 15, the low-rank projection space of Gt

becomes [POt ∈ RO×rO ,PIt ∈ RI×rI]. The gradient
Gt in the low-rank space is Gproj

t = Gt ×1 P⊤
Ot

×2 P⊤
It

,
and the restored tensor from the low-rank space is Ĝt =
Gproj

t ×1 POt
×2 PIt . Here, POt

and PIt can be updated
according to Eqn. 7 and Occasional Low-cost SVD on the
mode-1 and mode-2 unfolding of tensor G, respectively.

Algorithm 2: Adam with COAP (CONV)
Input: Weight tensor W ∈ RO×I×K1×K2 , Learning rate η,

Rank ratio α, Betas [β1, β2], Update interval [λ, Tu].

Initialize: rO = O
1√
α , rI = I

1√
α , t← 0,

Mproj
0 ∈ RrO×rI×K1×K2 ← 0,

Vproj
0 ∈ RrO×rI×K1×K2 ← 0

Randomly Initialize: PO ∈ RO×rO ,PI ∈ RI×rI

Define: GOt ← reshape(Gt, [O, IK1K2]),
GIt ← reshape(Gt, [I,OK1K2])

Compute: PO0 ← (PO,GO0),PI0 ← (PI ,GI0)
▷ Occasional Low-cost SVD

for t in [1, 2, · · ·] do
Compute: gradient Gt of Wt in the loss function.
if t mod Tu = 0 then

if t mod (λ× Tu) = 0 then
Compute: POt ← (POt−1 ,GOt),

PIt ← (PIt−1 ,GIt)
▷ Occasional Low-cost SVD

else
Update: POt ← (POt−1 ,GOt ,MOt−1) ▷
Eqn. 7
Update: PIt ← (PIt−1 ,GIt ,MIt−1) ▷
Eqn. 7

else
POt ← POt−1 , PIt ← PIt−1

▷ Project gradient and moments into low-rank space.
Gproj

t ← Gt ×1 P
⊤
Ot
×2 P

⊤
It

Mproj
t ← β1Mproj

t−1 + (1− β1)Gproj
t

Vproj
t ← β2Vproj

t−1 + (1− β2)(Gproj
t)2

▷ Calculate the bias correction term in low-rank
space.

∆Wproj
t ← Mproj

t /(1−βt
1)√

Vproj
t /(1−βt

2)+ϵ

▷ Restore ∆Wproj
t to original space and update W .

Wt ←Wt−1 − η∆Wproj
t ×1 POt ×2 PIt

Return: updated W

1.6. Impact of Low-rank Matrix Projection For-
mats on CNN Models Performance.

We compare different formats of Tucker decomposition,
i.e., Tucker-1, Tucker-2, and Tucker. In this context, the de-
fault Tucker format applies projections along all dimensions
of a tensor. For instance, if the tensor is 4-dimensional, it
requires 4 projection matrices. Tucker-2, on the other hand,
uses only two projection matrices, while Tucker-1 requires

0 100 200 300
Epoch

50

55

60

65

70

75

80

85

Ac
cu

ra
cy

ResNet18

Baseline
Tucker1
Tucker2
Tucker

0 100 200 300
Epoch

ResNet50

Baseline
Tucker1
Tucker2
Tucker

0 100 200 300
Epoch

ResNet101

Baseline
Tucker1
Tucker2
Tucker

Figure 1. The comparison of Top-1 accuracy for ResNet under dif-
ferent low-rank projection formats is conducted with a rank ratio
of 4. The models are trained for 100 epochs on the CIFAR-100
dataset.

Table 2. Pre-training DDPM on CIFAR-10 and CelebA-HQ
datasets on 8×V100. FID scores are reported, along with the GPU
memory usage of optimizer states in FP32 format.

Dataset Method
Rank
Ratio

Optimizer
Mem. (MB)↓ FID↓

CIFAR-10
(32× 32)
800K steps

AdamW - 272.72 5.42
GaLore 1.5 302.43 6.09
COAP 1.5 214.66 5.66

Adafactor - 222.71 5.43
GaLore 1.5 196.11 7.14
COAP 1.5 180.87 5.41

CelebA-HQ
(256× 256)
460K steps

AdamW - 867.26 12.82
GaLore 2 562.56 27.95
COAP 2 525.18 17.37

Adafactor - 714.64 12.38
GaLore 2 549.27 19.12
COAP 2 447.59 12.30

just one, making it a variant of SVD.
As shown in the Fig. 1, Tucker-2 achieves performance

closest to the baseline across different scales of ResNet
models. Thus, we select Tucker-2 as the primary format
for computing convolution projection matrices.

2. Experimental Results
The COAP optimizer is versatile and can be applied to var-
ious model training scenarios. We have provided training
results for DDPM and ControlNet, and this method is also
suitable for other application scenarios [8–11].

2.1. Pre-training DDPM

Experimental Settings. We implement DDPM based on
the Diffusers from Hugging Face and conduct experiments
on 8×V100 GPUs following the training and evaluation set-
tings in [2]. For CIFAR-10 [3], the model is trained with a

https://github.com/huggingface/diffusers/tree/
main/examples/unconditional_image_generation

https://github.com/huggingface/diffusers/tree/main/examples/unconditional_image_generation
https://github.com/huggingface/diffusers/tree/main/examples/unconditional_image_generation

batch size of 128 for 800K steps. For CelebA-HQ [6], the
model is trained with a batch size of 64 for 460K steps. We
generate 50K images to compute the FID (Frechet Inception
Distance) with respect to the training dataset and the images
generated with 1000 DDPM steps.

Comparison Results. Table 2 presents the performance
of our method and GaLore when compressing AdamW
and Adafactor optimizers on the DDPM model. Our ap-
proach consistently outperforms GaLore on CIFAR-10 and
CelebA-HQ datasets. Specifically, using the Adafactor op-
timizer, our method reduces FID by 1.7 and 6.8 compared
to GaLore. Additionally, at compression rates of 1.2× and
1.6×, our approach surpasses the baseline performance.

2.2. Qualitative Comparisons

We present qualitative results, showcasing images gener-
ated by models trained with COAP and other optimizers.
These results provide a visual comparison that complements
the quantitative analysis in the main paper. Comparisons
for DDPM (CIFAR-10), DDPM (CelebA-HQ), LDM, SiT-
XL/2, and ControlNet-XL are detailed in Tables 3, 4, 5, 6,
and 7, respectively.

Table 3. Comparison of images generated by DDPM trained on CIFAR-10 with different Adam-based optimizers.

Adam (272.7 MB) GaLore (302.4 MB) COAP (214.7 MB)

Table 4. Comparison of images generated by DDPM trained on CelebA-HQ with different Adafactor-based optimizers.
A

da
fa

ct
or

(7
14

.6
M

B
)

G
aL

or
e

(5
49

.3
M

B
)

C
O

A
P

(4
47

.6
M

B
)

Table 5. Random class-conditional samples generated by LDM trained on the ImageNet dataset using the COAP optimizer.

Loggerhead sea turtle (33) Sulphur-crested cockatoo (89) Golden retriever (207)

Husky (250) Panda (388) Balloon (417)

Baseball (429) Space shuttle (812) Volcano (980)

Table 6. Random class-conditional samples generated by SiT-XL/2 trained on the ImageNet dataset using the COAP optimizer.

Loggerhead sea turtle (33) Sulphur-crested cockatoo (89) Golden retriever (207)

Husky (250) Panda (388) Balloon (417)

Baseball (429) Space shuttle (812) Volcano (980)

Table 7. Comparison of images generated at different training steps (20K, 40K, 80K) with ControlNet-XL trained under various optimizers.
DDIM with a guidance scale of 5.0 is applied for image generation, with the number of inference steps set to 50.

Prompt: a young woman with a yellow flower crown on her head

Human
pose

Reference
20K 40K 80K

Adafactor (5.1 GB)

GaLore (4.7 GB) COAP (3.6 GB)

8-bit GaLore (2.4GB) 8-bit COAP (0.5 GB)

Prompt: beautiful african american woman with curly hair on blue background

Human
pose

Reference
20K 40K 80K

Adafactor (5.1 GB)

GaLore (4.7 GB) COAP (3.6 GB)

8-bit GaLore (2.4GB) 8-bit COAP (0.5 GB)

Prompt: a man in a scarf and sweater leaning against a brick wall

Human
pose

Reference
20K 40K 80K

Adafactor (5.1 GB)

GaLore (4.7 GB) COAP (3.6 GB)

8-bit GaLore (2.4GB) 8-bit COAP (0.5 GB)

Prompt: a young girl with her hands painted with colorful paint

Human
pose

Reference
20K 40K 80K

Adafactor (5.1 GB)

GaLore (4.7 GB) COAP (3.6 GB)

8-bit GaLore (2.4GB) 8-bit COAP (0.5 GB)

References
[1] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle.

A multilinear singular value decomposition. SIAM jour-
nal on Matrix Analysis and Applications, 21(4):1253–1278,
2000. 3

[2] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. Advances in neural information
processing systems, 33:6840–6851, 2020. 4

[3] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 4

[4] Pieter M Kroonenberg and Jan De Leeuw. Principal com-
ponent analysis of three-mode data by means of alternating
least squares algorithms. Psychometrika, 45:69–97, 1980. 3

[5] Ji Liu, Przemyslaw Musialski, Peter Wonka, and Jieping Ye.
Tensor completion for estimating missing values in visual
data. IEEE transactions on pattern analysis and machine
intelligence, 35(1):208–220, 2012. 3

[6] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.
Deep learning face attributes in the wild. In Proceedings of
International Conference on Computer Vision (ICCV), 2015.
5

[7] Ledyard R Tucker. Some mathematical notes on three-mode
factor analysis. Psychometrika, 31(3):279–311, 1966. 3

[8] Cheng Yang, Yang Sui, Jinqi Xiao, Lingyi Huang, Yu Gong,
Yuanlin Duan, Wenqi Jia, Miao Yin, Yu Cheng, and Bo Yuan.
Moe-i2: Compressing mixture of experts models through
inter-expert pruning and intra-expert low-rank decomposi-
tion, 2024. 4

[9] Yimeng Zhang, Xin Chen, Jinghan Jia, Yihua Zhang,
Chongyu Fan, Jiancheng Liu, Mingyi Hong, Ke Ding, and
Sijia Liu. Defensive unlearning with adversarial training
for robust concept erasure in diffusion models. Advances
in Neural Information Processing Systems, 37:36748–36776,
2024.

[10] Yimeng Zhang, Jinghan Jia, Xin Chen, Aochuan Chen, Yi-
hua Zhang, Jiancheng Liu, Ke Ding, and Sijia Liu. To gen-
erate or not? safety-driven unlearned diffusion models are
still easy to generate unsafe images... for now. In European
Conference on Computer Vision, pages 385–403. Springer,
2024.

[11] Yimeng Zhang, Tiancheng Zhi, Jing Liu, Shen Sang, Liming
Jiang, Qing Yan, Sijia Liu, and Linjie Luo. Id-patch: Ro-
bust id association for group photo personalization. arXiv
preprint arXiv:2411.13632, 2024. 4

	. Detailed Proposed Method
	. Inter-projection Correlation-aware Update.
	. Theory Analysis.
	. Hyper-parameter Settings.
	. Adafactor with COAP.
	. Extension to CONV Layer.
	. Impact of Low-rank Matrix Projection Formats on CNN Models Performance.

	. Experimental Results
	. Pre-training DDPM
	. Qualitative Comparisons

