De’Gaze: Deformable and Decoupled Representation
Learning for 3D Gaze Estimation

Supplementary Material

Appendices

Section 1 describes the implementation process of the
method in more details. We have carried out additional
experiments, and the results will be explained in Section
2. Finally, in Section 3, we will discuss the limitations of
the method and future work. Our code will be released on
GitHub upon acceptance.

1. More Details

1.1. Render Semantics

We begin by generating the template point clouds for both
the pupil and the iris using polar coordinates. The process
involves discretizing the angles and radii, and then con-
verting the polar coordinates into 3D Cartesian coordinates.
Generate Angle Grid. We generate a set of angles in the
range [0,27) for each batch and frame. This is done by
discretizing the angle space into Nypgles points:
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this results in an angle grid of shape [B, Nyngies], Where B
is the batch size multiplied by the number of frames.
Generate Radius Grids. The radius of the pupil and iris
are discretized into Npgjys points. For the pupil, the radii
range from O to rpypi, While for the iris, they range from
Tpupil 1O Tiris. The radii are generated as:
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for i=0,1,2,..., Nugius — 1,

this generates two radius grids, one for the pupil and one for
the iris, both of shape [B, Nradius)-
Convert Polar Coordinates to Cartesian Coordinates.
We convert the polar coordinates into 3D Cartesian coor-
dinates for both the pupil and the iris. For each pair of ra-
dius r and angle 6, the Cartesian coordinates (x,y, z) are
computed as:
x=r-cos(f), y=r-sin(f). 3)
For the pupil and iris point clouds, the z-coordinate is
set to a fixed value, determined by the distance from the

camera, L, and inverted to place the point clouds in front
of the camera:

Zpupil = Ziris = _Lp 4
Thus, the final 3D coordinates for the pupil and iris are:

Ppupil = (xpupila Ypupil s Zpupil) ) (5)
Piris = (Tiris) Yiris» Ziris) -
The resulting point clouds have shapes [B7Nangles X
N, radius 3] .

1.2. Regression Head

Following previous studies [1—4], we apply a linear projec-
tion to the variable-level content vector Q$°" and invariant-

var
level content vector Q57" to generate the eye parameters
Eyar and Ejpy:

E,qr = Linear(Q{o0),
: con (6)
E;, = Linear(Q5om).

The generated variable and invariant parameters jointly
reconstruct a three-dimensional eyeball model, and project
it on a two-dimensional plane to generate the edge contours
of the pupil and iris as the initial sampling positions. More-
over, we employ a Multi-Layer Perception (MLP) with
ReLU activation to generate sampling offsets. Specifically,
the invariant-level content vectors ()5c7 are used to com-
pute invariant-level offsets, while the variable-level content

vectors (QSo" are utilized to generate variable-level offsets:

i = MLP(Q520). -
e = MLP(Q2n).

These offsets are subsequently employed to refine po-
sition vectors Q%> and Q25. The regression head is ap-
pended to the final encoder layer as well as each decoder
layer. Furthermore, to preserve the alignment between dual-
level queries, we share the ground truth of pupil and iris

edge among each aligned query.

1.3. Training Details

De2Gaze is trained on NVIDIA A100 GPU, with a batch
size of 128. We set the initial weights of projection edge
10ss Acqge, €yeball center loss Acyec and pupil center loss

Apupitc 10 0.15. The initial weight of that two 3D gaze loss

ALZ,. and ASo5 %™ are set to 2.5.



TEyeD-subset_A

Subject Loss 3D gaze 2D gaze Sem. 2D pupil 2D eye
[°1 [°1d Tou cent.[px]] cent.[px]]

subiect] Gaze 0.49 2.10 N/A N/A N/A
) Sem. + Gaze + Cent. 0.36 1.77 87.5% 3.62 9.63
subiect? Gaze 0.82 3.50 N/A N/A N/A
o) Sem. + Gaze + Cent. 0.59 2.22 88.3% 2.45 1.70
bieet3 Gaze 0.50 2.05 N/A N/A N/A
subJe Sem. + Gaze + Cent. 0.48 1.88 90.4% 0.82 0.92
subiectd Gaze 0.56 2.18 N/A N/A N/A
) Sem. + Gaze + Cent. 0.49 1.88 83.5% 3.51 12.78
subiects Gaze 0.74 474 N/A N/A N/A
) Sem. + Gaze + Cent. 0.62 4.57 86.4% 3.71 5.40

Table 1. Quantitative results of individual training and testing of five subjects on TEyeD dataset. After eliminating the influence of kappa
angle, the results show that applying more constraints is beneficial to improve the reconstruction accuracy of 3D eyeball model.

2. Additional Experiments

Impact of the number of reference points. We varied the
number of sampling points and evaluated their impact on
both model performance and computational cost. The re-
sults in Fig. 1 demonstrate that:

With a smaller number of sampling points, the atten-
tion mechanism struggles to capture sufficient spatial de-
tails, leading to degraded performance, especially in sce-
narios with complex or high-resolution inputs. While com-
putational efficiency is significantly improved, the loss of
important features limits the overall accuracy of the model.

Increasing the number of sampling points initially en-
hances the model’s ability to capture fine-grained details.
However, when the number of points becomes too large,
performance starts to degrade. This is because an exces-
sive number of sampling points introduces noise and irrele-
vant features, which interfere with the attention mechanism,
leading to reduced precision. Additionally, the increased
computational cost and memory usage further impact the
overall efficiency.

The position visualization of different numbers of sam-
pling points is shown in Fig. 2. By carefully selecting an
optimal number of sampling points, the model achieves
a balance between computational efficiency and accuracy.
This configuration allows for robust feature extraction while
minimizing the influence of noise and redundant informa-
tion.

Impact of the kappa angle offset between the optical and
the visual axes. The normalized optical axis g is defined as
the vector from the eyeball center o, to the iris center o;,
g= ”Z::Z:” . We consider g the approximated gaze vector.
Note that we do not model the kappa angle offset between
the optical and the visual axes. In our previous experiments,
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Figure 1. Compare the 3D gaze error curves under four differ-

ent sampling numbers during training to choose the best sampling
number.

we put more supervision on the whole eyeball, such as the
center of the eyeball and pupil, as well as the edge of the
projection. However, the accuracy has declined. We trained
and tested five subjects separately to eliminate the influence
of kappa angle difference among different subjects. The ex-
perimental results in Tab. | show that imposing more con-
straints on the same subject can finally improve the accu-
racy of eyeball fitting and 3D gaze estimation.

3. Limitation and Future Work
3.1. Limitations

While De2Gaze achieves state-of-the-art results in 3D gaze
estimation, several limitations remain:
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Figure 2. Visualization of different number of sampling points.
When the number of sampling points is 128, the region of interest
is more concentrated in the eyelid and is least disturbed by the
characteristics of irrelevant regions.

Dependency on 3D Eyeball Model Precision. The accu-
racy of the learnable 3D eyeball model plays a critical role
in the success of De?Gaze. Errors in estimating invariant
parameters (e.g., eyeball radius, center position) can prop-
agate to gaze direction predictions, especially under non-
ideal lighting conditions or when partial occlusions occur.
Limited Temporal Context Modeling. Although De?Gaze
processes sequential frames, the method does not fully
leverage long-term temporal dependencies. As a result,
it may struggle with tasks requiring understanding of ex-
tended eye movement patterns, such as saccades or fixations
over prolonged periods.

Projection-Based Sampling Bias. The deformable sparse
attention mechanism relies on projecting 3D geometric fea-
tures onto the 2D plane for sampling. This design assumes
accurate alignment between 3D reconstructions and image
semantics, which may not hold in cases with significant cal-
ibration errors or out-of-distribution (OOD) inputs.

3.2. Future Work

To address these limitations and further advance the pro-
posed De2Gaze framework, future work will focus on the

following aspects:

Enhancing 3D Eyeball Model Robustness. Incorporate
additional constraints, such as anatomical priors or multi-
view data, to improve the robustness of invariant parameter
predictions, particularly under challenging conditions like
occlusions or extreme lighting.

Exploiting Long-Term Temporal Dependencies. Intro-
duce recurrent architectures or temporal transformers to
capture extended eye movement patterns. This would en-
able De?Gaze to perform well in tasks requiring dynamic
gaze analysis over longer sequences.

Reducing Projection-Based Sampling Errors. Investi-
gate adaptive refinement techniques for 3D-to-2D projec-
tion points to mitigate the impact of misaligned geometric
features, and explore hybrid sampling strategies combining
dense and sparse representations.
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