Disentangled Pose and Appearance Guidance for Multi-Pose Generation

Supplementary Material

A. Formulation of Diffusion Model

The Latent Diffusion Model (LDM) [5] is a probabilis-
tic diffusion framework [1] designed to operate in a latent
space rather than the pixel space. By shifting the diffusion
process to the latent domain, LDM significantly reduces
computational complexity while maintaining perceptual fi-
delity. This is achieved through an autoencoding model that
learns a compact latent representation perceptually equiva-
lent to the original image space. The model additionally in-
corporates a compression learning stage to further optimize
training efficiency.

Diffusion models generally start from a data distribu-
tion zg and define a forward Markovian process ¢, wherein
Gaussian noise is iteratively added to zg over ¢ time step.
The forward process is formalized as:
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where 3; € (0,1) determines the noise variance schedule.
Using the closed-form expression derived in [1], data at any
time step ¢ can be sampled directly:
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where a; = HZ:O as and a; = 1 — B;. This allows for
efficient noise schedule definition through a,. The posterior
q (zt—1|2t, 20) is derived using Bayes’ theorem and is also
Gaussian:
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where 3; = lff_h L3; and [ (24, z0) is expressed as:
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To reverse the forward process and sample from the
learned distribution, the conditional distribution p(z;_1|2:)
must be estimated. Since p(z;:_1]z¢) is intractable, a neural
network is employed to approximate it:

Do (thl|zt) - N(Zt—lﬁw (Zt7t> 729 (Zt7t)) P (5)

where 1y and ), are parameterized by the network. To
simplify training, [1] fixes the variance ), and focuses on

learning the mean py, as the variance is inherently defined
by the noise schedule /3; in the forward process. This sim-
plification accelerates convergence and improves model ef-
ficiency. Finally, the denoising step is expressed as:
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with pg further defined as:
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where €g (24, t, ) represents the network’s prediction of the
noise component.

B. Experiments

Additional Visulizations. We provide additional visualiza-
tions of the UBC Fashion dataset [6] and the TikTok dataset
[2] in Fig. 1 and 2.

Details of Ablation Experiments. In this section, we
present detailed ablation experiments and provide a com-
prehensive analysis of the results.

* w/o Global-aware Pose Generation (GPG): In this setup,
the GPG module was removed, and reference image fea-
tures were directly used as conditional embeddings for
the diffusion model. For pose control, multi-pose features
from the pose encoder were added to the U-Net input
layer. Results indicate that the GPG module plays a key
role in performance improvement. By pre-completing the
spatial transformation of the pose and effectively integrat-
ing reference image features with global pose features,
the GPG module alleviates the modeling burden on the
diffusion model, enabling it to focus on content genera-
tion tasks.

* w/o Multi-stage Image Encoder (MIE): The MIE mod-
ule was replaced with the CLIP image encoder [4], which
lacks the ability to produce multi-scale features. Conse-
quently, the Appearance Adapter (AD) module could not
be utilized. The experiments show that relying solely on
single-scale reference image features fails to preserve the
original appearance characteristics, resulting in degraded
pose generation quality.

* w/o Appearance Adapter (AD): To assess the AD mod-
ule’s effectiveness, it was removed, severing the condi-
tional link between the MIE module and the U-Net’s up-
sampling layers. The results highlight that the absence of
the AD module prevents the diffusion model from lever-
aging multi-scale appearance features, thereby reducing
generation quality. The AD module plays a crucial role
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Figure 1. Additional qualitative results of our method on the UBC Fashion dataset [6].
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Figure 2. Additional qualitative results of our method on the TikTok dataset [2].

in learning high-level semantic information about human
appearance and providing the model with effective ap-
pearance priors.

e w/o Fine-tune VAE (FVAE): Consistent with conclusions
in [6], our experiments confirm that sample-specific fine-
tuning is essential for maintaining identity and clothing
characteristics while achieving cross-pose consistency.
Moreover, FVAE significantly enhances the clarity and

realism of the generated images.

w/0 Lye.: The L,... term was removed to evaluate its con-
tribution. Inspired by [7], the reconstruction of the person
from the reference image was incorporated during pose
generation, encouraging the model to generate robust and
consistent human poses. Results demonstrate the critical
role of L,.. in improving pose quality and structural in-
tegrity.
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Figure 3. Qualitative results of video generation at 16 FPS using our method on the UBC Fashion dataset [6] are presented. The figure
demonstrates our method’s ability to generate coherent and realistic human pose videos in a video format.

 Alternative GTD Variants: To validate the effectiveness formation, and the (N + 1)th layer handles global pose

of the Global-aware Transformer Decoder (GTD) within

the GPG module, we compared it against two alternative

designs:

— Ours+(a): An additional cross-attention layer was
added to a standard Transformer decoder for global
pose interaction.

— Ours+(b): A cross-stacked Transformer decoder was
employed, where the N'th layer performs spatial trans-

interaction.

In contrast, our proposed GTD adopts the reverse order: it
first enhances target pose features using global pose fea-
tures through similarity-based querying, followed by in-
teraction with reference image features to complete spa-
tial transformation. Experimental results demonstrate that
GTD outperforms both alternatives, achieving superior
performance and generation quality.



Model SSIMT PSNRT FID| LPIPS| L;] FVD(l6f)|
DreamPose [3] (ICCV’23)  0.885 - 13.04  0.068  0.025 238.75
Ours 0939  25.617 11.74 0.052 0.015 66.410

Table 1. Quantitative metrics for generated videos (16 frames) on
the UBC Fashion dataset [6].

Discussion on Video Generation. Our method disentan-
gles pose control from appearance guidance, enabling high-
quality multiple human pose generation. Pose control is im-
plemented through the iterative application of the Global-
aware Transformer Decoder (GTD), a design that seems to
naturally extends to video generation tasks. To assess the
performance of our method on video generation, we con-
ducted experiments using the dataset from [6], with quan-
titative results presented in Tab. 1. The iterative genera-
tion mechanism of the GTD, combined with the Global-
aware block, allows our approach to achieve superior per-
formance in video generation. Future work will focus on en-
hancing temporal consistency by incorporating an optional
motion module into the primary U-Net architecture, further
strengthening the model’s capability to generate temporally
coherent video sequences.
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