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Supplementary Material

A. Implementation details
All training is conducted on 8 NVIDIA A100 PCI-E 40GB
GPUs. Training on Google Landmark v2 clean set [23]
takes 106 hours on LOCORE-base for 5 epochs. Models
are trained with AdamW optimizer [10], 5e−5 learning rate
and weight decay disabled. Global batch size is set to 128
with 4 gradient accumulation steps. We present the config-
urations of the different LOCORE variants in Table A. LO-
CORE-tiny is initialized from roberta-tiny-cased1

by migrating weights and repeatedly copying absolute po-
sition embedding along the sequence dimension2. LO-
CORE-small is initialized from the first 6 layers of
longformer-base-40963, while LOCORE-base is ini-
tialized from the full longformer-base-4096. To
accommodate 50 descriptors × (1 query image + 100 re-
ranking candidates) = 5,050 tokens, the position embeddings
in the original models are linearly interpolated to extend
their length from 4,096 to 5,120.

When experimenting with local descriptors from DI-
NOv2 [12], we use the same training set as AMES [18],
which is approximately half the size of the full GLDv2 clean
set, i.e. 750k images. We adopt the same global-local en-
semble scheme as AMES. The ensemble hyper-parameters
are selected based on the best-performing configuration on
GLDv2 public validation split and applied to ROxf and
RPar evaluations. For the training of AMES∗, we follow
the original training process from AMES, changing only the
batch size and learning late to 150 and 1e−5, respectively.

For baseline results on CUB-200 [22], Stanford Online
Products (SOP) [17] and In-shop [9], we reproduce them
using their official code releases and identical training con-
figuration, except for ProxyNCA++ [20], we change the
training image size from 256 × 256 to 224 × 224 to use the
training image size same as the other baselines.

For the performance benchmark in Section 4.3, we use
the Deepspeed [15] profiler on a single NVIDIA A100 GPU
to measure key performance metrics of the model per 100 re-
ranked gallery images as follows: the number of parameters
(# of Params), floating-point operations (FLOPs), throughput
in FLOPs per second, latency, and peak memory consump-
tion. All dynamic metrics are reported with 10 warmup
steps followed by 10 measurements for reporting the mean
and standard deviation. Parameters of visual backbones are

1https://huggingface.co/haisongzhang/roberta-
tiny-cased

2https://github.com/allenai/longformer/blob/
master/scripts/convert_model_to_long.ipynb

3https : / / huggingface . co / allenai / longformer -
base-4096

Model Variants tiny small base

Number of Parameters 19.4M 58.7M 111.8M
Number of Layers 4 6 12
Local Attention Window 1024 512 512
Hidden Size 512 768 768
Intermediate Size 2048 3072 3072
Number of Attention Heads 8 12 12
Max Context Length 5120 5120 5120

Table A. Architectural parameters of LOCORE variants.

excluded from # of Params.
We consider the descriptors to be already extracted and

exclude I/O from measuring memory, latency, etc. For the
geometric verification (GV) method, we run RANSAC in
OpenCV [3] with 1,000 iterations on AMD EPYC 9354
CPU and measure the wall-clock time as the latency and the
maximum resident set size (Max RSS) as the peak memory
consumption. All models are benchmarked with batched
input except CVNet Reranker [5]. It is worth noting that
CVNet Reranker does not support batched inference since
it computes pair-wise multi-scale correlation on raw feature
maps (without resizing) from query and gallery images of
different sizes. Thus, CVNet Reranker heavily underutilizes
the GPU and achieves extremely low throughput and high
latency. The FLOP, latency, and peak memory are measured
assuming query and gallery images of 512 × 512 size in
CVNet Reranker.

B. Additional Experimental Results

B.1. Additional comparisons

We present additional experiments with different combina-
tions of global and local features in Table B. We compare
with more baseline re-ranking methods, including methods
with global, i.e. SuperGlobal (SG) Rerank [16], and local, i.e.
AMES [18], RRT [19], R2Former [24], descriptors. We eval-
uate the models under different Hard settings, using different
global descriptors to generate the shortlist and different back-
bones for feature extraction. We also test the combination of
LOCORE with other re-ranking schemes.

Variations for Hard setup. As mentioned in the main
paper, there can be two approaches regarding how to han-
dle easy images in the hard setup: (i) Hard: easy images
are used to re-rank and removed before the evaluation (typ-
ically used in the literature [16]), and (ii) Hard⋆: easy im-
ages are completely removed from the database. While the
two choices (Hard and Hard⋆) are equivalent for pair-wise

https://huggingface.co/haisongzhang/roberta-tiny-cased
https://huggingface.co/haisongzhang/roberta-tiny-cased
https://github.com/allenai/longformer/blob/master/scripts/convert_model_to_long.ipynb
https://github.com/allenai/longformer/blob/master/scripts/convert_model_to_long.ipynb
https://huggingface.co/allenai/longformer-base-4096
https://huggingface.co/allenai/longformer-base-4096


Global Local Re-rank ROxf+1M RPar+1M
Medium Hard Hard⋆ Medium Hard Hard⋆

SG

N/A

N/A† 78.8 61.9 83.9 69.1
N/A 78.5 61.4 83.6 68.4

SG-Rerank† 84.4 71.1 N/A 84.9 71.4 N/A
SG-Rerank 84.0 69.4 63.9 85.2 72.3 75.7

CVNet

R2Former 79.9 63.7 83.8 69.7
RRT 79.3 62.7 83.6 69.1

AMES 80.7 65.7 84.6 71.8
LOCORE 81.9 68.6 64.9 84.6 71.4 70.7

SG + LOCORE 84.7 71.5 65.6 86.2 74.8 76.1

DINOv2

R2Former∗ 81.0 66.2 84.9 72.1
RRT∗ 81.0 66.1 85.5 73.3

AMES∗ 81.3 67.3 85.8 74.3
LOCORE 85.8 75.8 73.2 86.8 75.9 76.5

SG + LOCORE 86.5 76.3 73.7 87.2 76.9 78.2

DINOv2

N/A N/A 59.6 35.2 77.0 58.9
SG-Rerank 62.2 40.5 31.2 79.8 60.5 65.8

DINOv2

R2Former∗ 67.8 44.6 78.6 61.3
RRT∗ 68.8 46.0 79.6 64.0

AMES∗ 68.9 46.8 79.9 64.7
LOCORE 73.4 54.9 52.5 80.9 66.4 66.7

SG + LOCORE 71.2 54.4 48.7 81.9 68.7 69.5

Table B. Additional results with re-ranking top-400 candidates. Hard⋆: easy images are completely removed from the database. Hard: easy
images are used to re-rank and removed before the evaluation. †: results in the SuperGlobal paper [16]. LOCORE is reported with the base
variant. SG + LOCORE: re-ranking with SG first and then with LOCORE. ∗ indicates models trained with 768 hidden size, serving as a fair
comparison with LOCORE. N/A: not available.

re-ranking methods, this is not the case when interactions
between database images are considered (i.e. LOCORE, SG-
rerank). In Table B, it is evident that the two setup lead to
significantly different results. In most cases, mAP consider-
ably drops in ROxf, comparing results in Hard and Hard⋆;
whereas, mAP increases in RPar.

Performance with other backbones. First, we bench-
mark all models when the shortlist is generated based on
DINOv2 global descriptors. It is noteworthy that DINOv2
global descriptors are significantly worse than SG ones.
In this setup, LOCORE outperforms all other re-ranking
schemes by a vast margin.

Second, we evaluate LOCORE using local descriptors
extracted from CVNet backbones. CVNet local descriptors
have a higher dimension than that of DINOv2, i.e. 1024 vs
768; hence, we used a learnable linear projector to match
the embedding dimensionality of the transformer. LOCORE
achieves competitive performances compared with the pair-
wise re-rankers, with only AMES outperforming it in a few
cases. Yet, all local-based re-rankers are outperformed by
SG-Rerank. Nevertheless, LOCORE with DINOv2 outper-

forms SG-Rerank.

Combination with SG-Rerank. It is straightforward
to combine local and global-based re-ranking. To this end,
we combine LOCORE with SG-Rerank by applying global
re-ranking first, followed by local re-ranking. This combi-
nation achieves the best performance when SG is used as
global descriptor. However, this combination hurts LOCORE
performance on ROxf when DINOv2 is used as global.

Performance per query. To highlight the advantages of
our proposed list-wise re-ranking over pair-wise re-ranking,
we present several scatter plots in Figure A, showing the
average precision of each sample in ROxf+1M Hard before
and after re-ranking with different re-ranking paradigms. We
compare our model with AMES [18], which is considered
the state-of-the-art solution for pair-wise re-ranking. In the
first two plots, we observe that most data points are concen-
trated in the upper-left half and above the red reference line,
indicating that both re-ranking paradigms improve the rank-
ing accuracy for the majority of query images. However, the
list-wise re-ranking method driven by LOCORE has barely
any sample points below the red reference line, meaning
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Figure A. Average precision per query scatter plot on ROxf+1M Hard for global-only vs. AMES (Left), global-only vs. LOCORE-small
(Middle) and AMES vs. LOCORE-small (Right). Global descriptors are from RN101-Superglobal, which by itself achieves mAP=61.4%.
Re-ranking is performed for top-100 candidates, and the color bar indicates the number of positive images in the shortlist for each query.

Global Local L K
ROxf+1M RPar+1M

Medium Hard⋆ Medium Hard⋆

SG DINOv2
50 100 85.8 73.2 86.8 76.5

100 50 83.9 68.6 85.2 72.5
25 200 84.5 72.1 85.6 75.1

Table C. Additional results for LOCORE-base with different com-
binations of the number of local descriptors L and the number of
re-ranking candidates K on N = 400 candidates.

the re-ranking only improves the retrieval on the individual
query level. The distinction between the two models is most
prominent in the final plot, where the number of sample
points above the winner reference line far exceeds those be-
low, demonstrating that LOCORE outperforms AMES on
more query samples. We also observed that the list-wise re-
ranking method is relatively robust in terms of the number of
positive samples included in the shortlist, as the color distri-
bution of the sample points does not exhibit any discernible
pattern. This indicates the general versatility of LOCORE.

B.2. Additional ablations

Number of images vs number of descriptors. We explore
the relationship between the number of local descriptors
and the number of image candidates within a given context
window in Table C. Specifically, we set the context win-
dow to 5,120 and examine three configurations of LOCORE:
(i) using 100 gallery images with 50 local descriptors per
image, i.e. the default setup, (ii) using 200 gallery images
with 25 local descriptors per image, i.e. more candidate
images but fewer descriptors per image, and (iii) using 50
database images with 100 local descriptors per image, i.e.
more descriptors per image but fewer candidate images. The
LOCORE in the default settings reports the best results.

Comparison with other recurrent models. Other model
architectures with no restrictions on context length that could

Ablation Module R@1 R@10 mAP@R

Global descriptors 80.8 92.1 65.1

LOCORE-tiny 82.4 93.1 68.0
LOCORE-small 83.3 92.7 69.4
LOCORE-base 83.8 92.9 71.0

LOCORE-RWKV 81.4 92.3 66.7
LOCORE-Mamba 80.6 92.1 66.4

Table D. Ablation studies for LOCORE recurrent models on the
SOP dataset. Re-ranking is performed with the top 100 candidates.

be employed instead of LongFormer are the recently pro-
posed recurrent models Mamba [2] and RWKV [13]. As
the causal nature of the recurrence-based model does not
align well with our re-ranking motivation and is strictly less
expressive than bi-directional encoders [4, 14], we follow
the common practice in recurrent visual encoder commu-
nity [1, 6, 8] to build a bi-directional variant that serves as an
efficient sequence encoder. To ensure recurrent models can
still handle long-range interactions and alleviate the inherent
information bottleneck in the design of recurrent models,
we devise a mechanism that resembles the query global at-
tention in Section 3.2 by interleaving recurrent blocks with
uni-directional transformer blocks [21]. These transformer
blocks compute attention scores between intermediate hid-
den states of query image tokens and intermediate hidden
states of gallery image tokens and produce fused intermedi-
ate representations for the following layers to process. The
uni-directional attention guarantees that every gallery image
has similar difficulty accessing the query image, irrespective
of its position in the sequence relative to the query. Although
we find that these recurrence-based models could slightly
outperform the base global retrieval model, they do not sur-
pass our transformer-based results, as shown in Table D.
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Figure B. Qualitative analysis on ROxford dataset of LOCORE-base on RN50-DELG descriptors. Upper: two hard positive gallery images
get assigned with higher ranks while a negative gallery image is put in lower ranks after re-ranking. Lower: the first gallery image can
be easily identified as positive due to its dense matching with the query image; it can also serve as a perfect anchor image for refining the
ranking of the second gallery image due to their transitive relationship.

B.3. Qualitative Results

We illustrate the re-ranking performance of LOCORE in Fig-
ure B as qualitative results. The upper example underscores
the superior performance of our method, demonstrated by its
success in elevating the ranking of two hard positive images
and lowering that of the negative gallery image. We also
show in the lower example that our model is able to capture
the transitive relationship between query and gallery images.
The transitive relationship is based on the assumption that
generally, if two gallery images are similar and one of them
is predicted as positive, then the other should be calibrated
with higher confidence. In the lower example, the correspon-
dence between the query image and the first gallery image is
easy to catch as the common geometric features are evident,
resulting in Easy matching in the figure. However, although
the global retriever returns the second gallery image as re-

ranking candidates, the sparse local features focused on the
top of the tower make it hard for pair-wise re-ranker to assign
this gallery image a high confidence score. This misalign-
ment is calibrated by our list-wise re-ranking paradigm since
the windows in both gallery images can serve as the anchor
to propagate the positive prediction from the easy candidate
to the hard one.

Additionally, in Figure C the easy positive gallery has
visual overlap with the query (rooftop). The hard positive
gallery has little visual overlap with the query, but larger
overlap with the first positive (e.g. windows). We wish to
answer this question: Are the local features of the window
improving the rank of the hard positive due to a transitive re-
lationship? We remove local features of the windows (blue
crosses), repeat the similarity estimation, and compare the
ranks. The decreased similarity score is a sign of LOCORE
capturing transitive relationships.
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Figure C. Visualization of LOCORE capturing transitive rela-
tionships in gallery images. We prevent LOCORE from accessing
local features of the easy positive corresponding to the windows
(blue crosses) and instead randomly sample local features from
other negative images. The dropped similarity score indicates
LOCORE relies on the transitivity of local features to calibrate
predictions for hard positive gallery images.

C. Limitations and Future Work

Despite the merits in efficiency and re-ranking performance,
our model is inherently restricted by the context window of
existing encoder-only sequence models. A limited context
window limits the number of re-ranking candidates in the
gallery and the number of local descriptors that LOCORE can
use. While recurrent models offer more flexibility with the
context window size, we find that they could not capture list-
wise re-ranking dependencies as well as transformer-based
models, resulting in sub-optimal performance. Future work
could adopt large-scale decoder-only sequence models which
typically have longer context windows and greater capacity
for list-wise re-ranking. Additionally, context parallelization
techniques (e.g., RingAttention [7], Infini-attention [11])
could help expand the context window of current Trans-
former encoder models. Lastly, extractive re-ranking as
proposed in our work could also be seamlessly adopted for
other modalities, e.g. document or video re-ranking.
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