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A. Main Theorems and Proofs
A.1. Proof of Theorem 1
Theorem 1. Let q,k ∈ {0, 1}d be independent spike trains
with firing rates fq and fk, respectively. The similarity
scores for dot-product and XNOR similarity both follow a
binomial distribution:

SimDP(q,k) ∼ Bin(d, p1), (31)

SimXNOR(q,k) ∼ Bin(d, p1 + p2), (32)

where p1 = fqfk, and p2 = (1−fq)(1−fk), represent the
probability of matching spikes and non-spikes, respectively.

Proof. Let q = (q1, q2, . . . , qd) and k = (k1, k2, . . . , kd)
be independent binary vectors of length d, where each
qi, ki ∈ {0, 1}. The firing rates are defined as fq = P (qi =
1) and fk = P (ki = 1) for all i.

For each position i, since qi and ki are independent
Bernoulli random variables, we have:

P (qi = 1) = fq, P (qi = 0) = 1− fq, (33)

P (ki = 1) = fk, P (ki = 0) = 1− fk. (34)

Then we define two random variables for each position i:

Xi = qiki ∈ {0, 1}, (35)

Yi =

{
1, if qi = ki,

0, if qi ̸= ki.
(36)

Both Xi and Yi take values in {0, 1} and depend on qi and
ki. Since qi and ki are independent for all i, the random
variables Xi and Yi are independent across different i.

Define the dot-product similarity and the XNOR similar-
ity as sums of these random variables:

SimDP(q,k) =

d∑
i=1

Xi, SimXNOR(q,k) =

d∑
i=1

Yi. (37)

Since each Xi and Yi are independent Bernoulli random
variables, their sums SimDP and SimXNOR follow binomial
distributions. Next, we compute the success probabilities
for Xi and Yi.

For Xi and Yi, we have:

P (Xi = 1) = P (qi = 1) · P (ki = 1) = fqfk. (38)

P (Yi = 1) = P (qi = 0, ki = 0) + P (qi = 1, ki = 1)

= fqfk + (1− fq)(1− fk).
(39)

Thus, Xi ∼ Ber(fqfk), and SimDP(q,k) ∼ Bin(d, fqfk).
Similarly, Yi ∼ Ber (fqfk + (1− fq)(1− fk)), and
SimXNOR(q,k) ∼ Bin (d, fqfk + (1− fq)(1− fk)) .

This completes the proof.

A.2. Proof of Theorem 2
In this subsection, we first establish the distribution of the
score under α-XNOR similarity in Theorem 2. Then, we
derive its expectation and variance in Corollary 1.

Theorem 2. Let q,k ∈ {0, 1}d be independent spike trains
with firing rates fq and fk, respectively. The score calcu-
lated by α-XNOR similarity is distributed as:

P (s = k + lα) =
d!

k! l! (d− k − l)!
· pk1 pl2 pd−k−l

3 , (40)

for 0 ≤ k ≤ d and 0 ≤ l ≤ d − k, where p1 = fqfk,
p2 = (1− fq)(1− fk), and p3 = 1− p1 − p2.

Proof. Consider two independent spike trains q,k ∈
{0, 1}d, where each element qi and ki is a Bernoulli ran-
dom variable with probabilities P (qi = 1) = fq and
P (ki = 1) = fk, respectively, for i = 1, 2, . . . , d.

For each index i, the variables qi and ki are indepen-
dent Bernoulli random variables. The joint probabilities of
their possible outcomes are determined by these firing rates.
Specifically, the probability that both qi and ki are equal to
1 is:

P (qi = 1, ki = 1) = fq · fk = p1, (41)

in which case α(qi, ki) = 1. Conversely, the probability
that both qi and ki are equal to 0 is

P (qi = 0, ki = 0) = (1− fq)(1− fk) = p2, (42)

resulting in α(qi, ki) = α. In all other scenarios where qi
and ki differ, the probability is

P (qi ̸= ki) = P (qi = 1, ki = 0) + P (qi = 0, ki = 1)

= fq(1− fk) + (1− fq)fk = p3,
(43)

and α(qi, ki) = 0 in these cases.
Since the outcomes at each position i are independent,

the joint distribution of K, L, and M follows a multinomial
distribution:

P (K = k, L = l,M = m) =
d!

k! l!m!
· pk1 pl2 pm3 , (44)



where m = d− k − l, and 0 ≤ k, l,m ≤ d.
The total α-Similarity score s can be expressed in terms

of K and L as:

s = K · 1 + L · α+M · 0 = K + Lα. (45)

Therefore, the probability that the α-Similarity score
equals s = k + lα is:

P (s = k + lα) = P (K = k, L = l)

=
d!

k! l! (d− k − l)!
· pk1 pl2 pd−k−l

3 ,
(46)

for all valid combinations of k and l such that 0 ≤ k ≤ d
and 0 ≤ l ≤ d− k.

This completes the proof.

Building on this distribution, we calculate the expecta-
tion and variance of the score under α-XNOR similarity, as
presented in the following corollary.

Corollary 1. Let q,k ∈ {0, 1}d represent independent
spike trains with firing rates fq and fk, respectively. The ex-
pectation and variance of the score, calculated by α-XNOR
similarity, are given as follows:

E[s] = d · (p1 + αp2), (47)

V[s] = d ·
(
p1 + α2p2 − (p1 + αp2)

2
)
, (48)

where s denotes the score, p1 = fqfk, p2 = (1 − fq)(1 −
fk), and p3 = 1− p1 − p2.

Proof. To calculate the expectation, we have:

E[score] = E[K + Lα] = E[K] + αE[L]. (49)

Given the properties of the multinomial distribution:

E[K] = dp1, E[L] = dp2. (50)

Thus,

E[score] = dp1 + αdp2 = d(p1 + αp2). (51)

For the variance, we have:

V[score] = V[K+Lα] = V[K]+α2V[L]+2αCov(K,L).
(52)

Since K and L are counts of disjoint events in the multino-
mial distribution, they are negatively correlated:

Cov(K,L) = −dp1p2. (53)

Therefore,

V[score] = dp1(1− p1) + α2dp2(1− p2) + 2α(−dp1p2).
(54)

Simplifying, we obtain:

V[score] = d
(
p1 + α2p2 − (p1 + αp2)

2
)
. (55)

This completes the proof.

A.3. Proof of Theorem 3
Theorem 3. Let q,k ∈ {0, 1}d be independent spike trains
with firing rates fq, fk ∈ (0, 1) and α ∈ (0, 1). Then the
entropies satisfy: H (Simα-XNOR(q,k)) > H (SimDP(q,k))
and H (Simα-XNOR(q,k)) > H (SimXNOR(q,k)).

Proof. From Theorem 2, the distribution of SimAlpha(q,k)
is given by:

P (score = k + lα) =
d!

k! l! (d− k − l)!
· pk1 pl2 pd−k−l

3 ,

(56)
for 0 ≤ k ≤ d and 0 ≤ l ≤ d − k, where p1 = fqfk,
p2 = (1− fq)(1− fk), and p3 = 1− p1 − p2.

By Theorem 1, we know that SimDP(q,k) and
SimXNOR(q,k) both follow binomial distributions:

SimDP(q,k) ∼ Bin(d, p1), (57)

SimXNOR(q,k) ∼ Bin(d, p1 + p2). (58)

To compare entropies, we examine H (SimAlpha(q,k))
in relation to H (SimDP(q,k)) and H (SimXNOR(q,k)).

Observe that SimAlpha(q,k) is a function of two ran-
dom variables, K and L, where K is the number of po-
sitions where qi = ki = 1 and L is the number of posi-
tions where qi = ki = 0. The joint distribution of (K,L)
follows a multinomial distribution with parameters d and
probabilities (p1, p2, p3), where p3 = 1− p1 − p2. The en-
tropy H (SimAlpha(q,k)) is equivalent to the joint entropy
H(K,L) because SimAlpha = K + αL is a deterministic
function of K and L. Therefore,

H (SimAlpha(q,k)) = H(K,L). (59)

Next, consider the entropy H (SimDP(q,k)), which is the
entropy of a binomial random variable K ∼ Bin(d, p1):

H (SimDP(q,k)) = H(K). (60)

Similarly, the entropy H (SimXNOR(q,k)) corresponds to
the entropy of K + L, which is a function of K and L:

H (SimXNOR(q,k)) = H(K + L). (61)

According to the chain rule for entropy, we have:

H(K,L) = H(K) +H(L | K). (62)

As conditional entropy H(L | K) is always non-negative
(H(L | K) ≥ 0), it follows that:

H(K,L) ≥ H(K). (63)

Equality holds if and only if L is a deterministic function of
K, which is not the case here as p2 > 0.



Furthermore, since K + L is a deterministic function of
K and L, the entropy satisfies:

H(K,L) ≥ H(K + L). (64)

Equality holds if and only if the function preserves all the
uncertainty present in (K,L), which does not hold here due
to the non-deterministic relationship between K and L.

Since both equalities cannot hold, combining these re-
sults we obtain:

H(K,L) > H(K) and H(K,L) > H(K + L). (65)

Thus, the entropy of the Alpha similarity score exceeds that
of both the Dot-Product and XNOR similarity scores:

H (SimAlpha(q,k)) > H (SimDP(q,k)) ,

H (SimAlpha(q,k)) > H (SimXNOR(q,k)) .
(66)

This completes the proof.

A.4. The distribution of Attn’ in α-SSA
The distribution of Attn′ derived in α-SSA can be charac-
terized by the following Theorem 4.

Theorem 4. Let v ∈ {0, 1}n be a spike train with firing
rate fv , and let Score ∈ Rn be a vector of independent
scores calculated using α-Similarity. For constants k and
b, the attention output Attn’ = (k · Score + b)⊤v has an
expected value

E[Attn’] = n (kd (p1 + αp2) + b) fv (67)

and variance

V[Attn’] = nfv(1− fv)
(
k2d(p1 + α2p2

− (p1 + αp2)
2) + (kd(p1 + αp2) + b)2

)
.

(68)

Proof. According to Corollary 1, each element of Score
follows this distribution:

P (Scorej = k + lα) =
d!

k! l! (d− k − l)!
· pk1 pl2 pd−k−l

3 ,

(69)
where 0 ≤ k ≤ d and 0 ≤ l ≤ d − k, with p1 = fqfk,
p2 = (1−fq)(1−fk), and p3 = 1−p1−p2. The expectation
and variance of each Scorej are given by:

E[Scorej ] = d(p1 + αp2), (70)

V[Scorej ] = d
(
p1 + α2p2 − (p1 + αp2)

2
)
. (71)

We now define the weighted sum:

Attn’ = (k · Score + b)⊤v =

n∑
j=1

(k · Scorej + b)vj . (72)

To compute E[Attn’], we use the linearity of expectation:

E[Attn’] = E

 n∑
j=1

(k · Scorej + b)vj


=

n∑
j=1

E[(k · Scorej + b)vj ].

(73)

Since each vj is a Bernoulli random variable with success
probability fv , we have

E[(k · Scorej + b)vj ] = (kE[Scorej ] + b) fv. (74)

Substituting E[Scorej ] = d(p1 + αp2), we obtain

E[Attn’] = n (kd(p1 + αp2) + b) fv. (75)

Next, we calculate V[Attn’]. Since Attn’ is a sum of in-
dependent random variables, we can write

V[Attn’] =
n∑

j=1

V((k · Scorej + b)vj). (76)

To compute V((k · Scorej + b)vj), we apply the variance
formula for the product of a random variable and a Bernoulli
variable. Specifically, if Y is a Bernoulli random variable
with success probability p, and X is an independent random
variable, then:

V(X ·Y ) = E[X2] ·p · (1−p)+(E[X])2 ·p · (1−p). (77)

Applying this formula, we get:

V((k · Scorej + b)vj) = E[(k · Scorej + b)2]fv(1− fv)

+ (E[k · Scorej + b])
2
fv(1− fv).

(78)
Then expand E[(k · Scorej + b)2] and (E[k · Scorej + b])

2:

E[(k · Scorej + b)2] = k2V[Scorej ] + (kE[Scorej ] + b)2,
(79)

(E[k · Scorej + b])
2
= (kd(p1 + αp2) + b)2. (80)

Substituting these into the expression for V((k · Scorej +
b)vj), we obtain:

V((k · Scorej + b)vj) = fv(1− fv)
(
k2d(p1 + α2p2)

− k2d(p1 + αp2)
2

+ (kd(p1 + αp2) + b)2
)
.

(81)
Summing over all j, we get the total variance of Attn’:

V[Attn’] = nfv(1− fv)
(
k2d(p1 + α2p2

− (p1 + αp2)
2) + (kd(p1 + αp2) + b)2

)
.

(82)
This completes the proof.



Table 4. Correlation of α and metrics across different α-SSA layers

α α-SSA Layer fQ (%) fK (%) fV (%) fAttn (%) k b Acc. (%)

0

1 31.5 9.7 10.2 35.1 0.45 -0.36

79.042 33.2 8.5 12.8 33.2 0.27 -0.44
3 29.8 9.9 13.4 32.1 0.34 -0.35
4 27.4 10.8 12.0 28.2 0.55 -0.22

0.2

1 31.9 16.6 11.2 19.8 0.18 -0.90

79.812 32.5 19.9 13.8 23.6 0.16 -0.84
3 37.7 20.6 12.5 20.5 0.17 -0.90
4 34.6 22.0 12.0 14.1 0.17 -0.92

0.4

1 32.8 28.9 10.6 26.3 0.15 -1.37

79.882 23.4 24.7 13.6 22.5 0.13 -1.22
3 23.2 23.0 11.9 18.9 0.14 -1.31
4 35.0 30.1 10.0 14.1 0.15 -1.42

0.6

1 22.4 25.1 11.0 24.2 0.14 -1.76

79.632 14.9 22.6 12.4 21.3 0.13 -1.74
3 12.0 13.7 13.0 18.5 0.12 -1.85
4 11.6 16.9 9.7 12.4 0.14 -2.09

0.8

1 14.6 19.5 10.2 29.7 0.14 -2.59

79.422 13.5 23.4 13.0 32.3 0.12 -2.22
3 14.1 26.7 10.6 28.9 0.14 -2.36
4 9.2 22.0 8.4 17.9 0.16 -2.91

1

1 14.5 20.8 11.0 33.4 0.15 -3.31

79.322 12.3 20.0 13.6 32.6 0.13 -3.12
3 9.5 13.6 13.4 31.5 0.15 -3.80
4 4.2 12.9 9.4 23.7 0.20 -5.27

Table 5. Main configurations of models in image classification experiments.

Type Stage Tokens Layer Specification Dimensions

ViT 1 H
16 × W

16

Patch Embedding 384 / 5122 Spiking Transformer Encoder Block

Swin

1 H
4 × W

4

Downsampling 96 / 128Conv-based SNN Block

2 H
8 × W

8

Downsampling 192 / 256Conv-based SNN Block

3 H
16 × W

16

Downsampling 384 / 512Spiking Transformer Encoder Block

B. Spiking Firing Rates in SNNs

The spiking firing rate in SNNs is related to their training
methods. Based on the training approach, SNNs can be
broadly classified into two categories: ANN-to-SNN con-
version and direct training. SNNs obtained through ANN-
to-SNN conversion require mapping the activation values of
the ANN to firing rates, which typically results in relatively

high firing rates, around 50%. In contrast, directly trained
SNNs can naturally optimize the firing rate to be signifi-
cantly lower, further reducing power consumption.

In recent research, spiking Transformer models predom-
inantly employ direct training methods, demonstrating sig-
nificant sparsity. Table 6 presents the evaluated firing rates
of spiking neurons across four layers of the SSA module in
the Spikformer model on the CIFAR-100 dataset. Here, Q,



Table 6. Firing Rates in SSA of Spikformer on CIFAR100

SSA Layer Q K V Attn Output

1 22.9 9.3 11.3 28.4 8.7
2 19.1 8.6 8.7 23.3 9.8
3 19.7 7.0 8.9 21.0 11.6
4 21.9 6.0 7.8 5.2 20.2

K, V, Attn, and Output correspond to the spiking neurons
generating Q, K, V, Attn, and Z described in Sec. 3.3,
respectively. The table shows that, while firing rates vary
across different neurons and layers, they consistently re-
main below 30%. This indicates that the spiking data is
highly sparse, with a substantial proportion of non-spikes.

According to information theory, rare events carry more
information, meaning that each spike, which occurs with
low probability, conveys a significant amount of informa-
tion. Therefore, it is reasonable to consider spikes in spik-
ing data as more important than non-spikes, prompting us
to differentiate the distinct significance of spikes from non-
spikes in spiking self-attention.

C. Layer-wise Details for Study of α
In Sec. 5.2, we analyze the influence of α on the key met-
rics and parameters within the α-SSA module. The experi-
ments are conducted on the Spikformer architecture on CI-
FAR100 and the metrics include the linear transformation
factors k and b; the spiking firing rates fQ, fK, fV, and
fAttn responsible for generating Q, K, V, and the spiking
self-attention output Attn, respectively; and the network’s
performance accuracy (Acc.). Here, we present the detailed
data across different α-SSA layers, shown in Table 4. As
α increases from 0 to 1, both the spiking firing rates and
the parameters of linear transformations are influenced and
undergo changes, with slight variations observed across dif-
ferent layers. The table shows that as the network depth in-
creases, the magnitude of changes in the respective metrics
becomes greater, suggesting that α has a more significant
impact on the deeper layers.

D. Architecture Details in Experiments
In our image classification experiments, we evaluate the
proposed α-SSA module on spiking Transformers using
both ViT and Swin Transformer architectures. The details
are summarized in Table 5. For the ViT architecture, the
model consists of a patch embedding layer followed by sev-
eral spiking Transformer encoder blocks. And the model
with Swin Transformer architecture comprises three stages,
each beginning with a downsampling layer and then fol-
lowed by either a convolution-based SNN Block or multiple
spiking Transformer encoder blocks.


