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Sparse Multi-View Images — Supplementary Material

1. Implementation Details

Feature extractor and depth refiner. We employ the same
network architecture for both the image feature extractor and
the depth refiner, with differences only in their input and
output channels. The feature extractor processes the input
image and generates a 32-channel feature map while preserv-
ing the input image resolution. Conversely, the depth refiner
takes both the original depth map and the image as input
and produces a refined depth map as output. The network
architecture is illustrated in Figure 3. Each residual block in
the network comprises two 3× 3 convolutional layers, each
followed by ReLU activation and group normalization.

Sampling voxel-level features. Given a set of target points
(estimated SMPL points P or pixel-wise points P

′
in our

work), we aim to sample their voxel-level features from a
constructed feature volume to capture 3D-aware geometric
information. To achieve this, we first construct a feature vol-
ume using sparse 3D points (unprojected points derived from
refined depth or prior points Po in our work). Inspired by
[4, 6], we utilize SparseConvNet [2, 5] to diffuse the fea-
tures of these sparse 3D points. The network architecture is
detailed in Table 3. Initially, we compute the 3D bounding
box of the sparse points and divide it into small voxels, each
measuring 5mm × 5mm × 5mm, resulting in a volumet-
ric representation. SparseConvNet processes this volumetric
input using 3D sparse convolutions, diffusing the features
of the sparse points into the surrounding 3D space and pro-
ducing output features. The multi-scale outputs from the 5th,
9th, 13th, and 17th layers of SparseConvNet are resized and
concatenated to form the final feature volume. Voxel-level
features are then sampled from this output volume using
tri-linear interpolation.

Gaussian predictor. As shown in Figure 4, our Gaussian
predictor networks take point-related features as input, which
include pixel-level image features and point features from
the SPD network (or pixel-level depth features). These net-
works output Gaussian properties. Each predictor head is
implemented as a 3-layer MLP, with each layer (except the
final one) producing 256-dimensional features.

Offset estimator. The architecture of the offset estimator
is illustrated in Figure 5. It takes the voxel-level feature f

′

v

of pixel-wise points as input and outputs per-point offset.
Each layer generates 128-dimensional features with ReLU
activations, except for the final layer, which employs Tanh
activations.

Num of view PSNR↑ SSIM ↑ LPIPS ↓
1 21.31 0.9123 0.1026
2 23.57 0.9255 0.0857
3 26.32 0.9478 0.0530
4 28.94 0.9615 0.0433
5 30.98 0.9711 0.0341

Table 1. Ablation study on the number of input views. We train
and test our method given different input views. The performance
improves with more available observations.

1 view 2 views 3 views 4 views 5 views

Figure 1. Ablation study on the number of input views.

position depth Ours GT

Figure 2. Ablation study on alternatives for Gaussian position
prediction.

Method PSNR↑ SSIM ↑ LPIPS ↓
position 18.34 0.8915 0.1271

depth 24.25 0.9405 0.0666
Ours 28.94 0.9615 0.0433

Table 2. Ablation study on alternatives for Gaussian position
prediction.
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Figure 3. Architecture of feature extractor and depth refiner.

Layer Description Output Dim.
Input volume D’ × H’ × W’ × 32

1-2 (3× 3× 3 conv, 32 features, stride 1) × 2 D’ × H’ × W’ × 32
3 (3× 3× 3 conv, 32 features, stride 2) D’/2 × H’/2 × W’/2 × 32
4-5 (3× 3× 3 conv, 32 features, stride 1) × 2 D’/2 × H’/2 × W’/2 × 32
6 (3× 3× 3 conv, 32 features, stride 2) D’/4 × H’/4 × W’/4 × 64
7-9 (3× 3× 3 conv, 64 features, stride 1) × 3 D’/4 × H’/4 × W’/4 × 64
10 (3× 3× 3 conv, 64 features, stride 2) D’/8 × H’/8 × W’/8 × 128
11-13 (3× 3× 3 conv, 128 features, stride 1) × 3 D’/8 × H’/8 × W’/8 × 128
14 (3× 3× 3 conv, 128 features, stride 2) D’/16 × H’/16 × W’/16 × 128
15-17 (3× 3× 3 conv, 128 features, stride 1) × 3 D’/16 × H’/16 × W’/16 × 128

Resize & Concat. outputs of layer 5, 9, 13, and 17 D’/16 × H’/16 × W’/16 × 352

Table 3. Architecture of SparseConvNet. Each layer consists of sparse convolution, batch normalization and ReLU.
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Figure 4. Architecture of Gaussian predictor.

2. Additional Qualitative Results

Figure 6 showcases additional qualitative comparison of
in-domain generalization results. Compared to all baseline
methods, our method can preserve more reasonable geometry

𝑓𝑓𝑣𝑣′ 128 128 128 3

Figure 5. Architecture of offset estimator.

and high-fidelity appearance details. Figure 7 provides addi-
tional qualitative comparison of cross-domain generalization,
where we show the results on RenderPeople [1, 3] dataset us-
ing model trained on THuman2.0 [7] dataset, demonstrating
that our method outperforms others on cross-dataset general-
ization. For further results, please refer to our supplementary
video.
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Figure 6. More qualitative comparison of in-domain generalization.

3. Additional Ablation Studies

Ablation study on the number of input views. We evaluate
our method with varying numbers of input views, as pre-
sented in Table 1 and Figure 1. The results indicate that per-
formance improves as the number of input views increases,
providing more observations.

Ablation study on alternatives for Gaussian position pre-
diction. To validate the effectiveness of our proposed coarse-
to-fine pixel-wise Gaussian prediction method, which lever-
ages refined prior 3D points to regress fine-grained 3D Gaus-
sians, we compare it against two alternative approaches:
jointly regressing Gaussian positions or depth maps along-
side other Gaussian properties via Gaussian predictor, de-
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Figure 7. More qualitative comparison of cross-domain generalization.

Method PSNR↑ SSIM ↑ LPIPS ↓
w/o depth refiner 27.27 0.9524 0.0602
w/o coarse Gaussian predictor 26.34 0.9471 0.0678
Ours Full 28.94 0.9615 0.0433

Table 4. More geometry-related ablation studies.

noted as “position” and “depth” respectively. To ensure valid
numerical results, we clamp the predicted position and depth
values to the range [0, 1] and scale these values according
to the bounding box of the fitted SMPL model. As shown
in Table 2 and Figure 2, our proposed strategy demonstrates
superior performance compared to the other two alternatives.
Ablation studies on depth refiner and coarse Gaussian
predictor. In table 4, we conduct ablation studies on THu-
man2.0 dataset to quantitatively evaluate the contribution of
our depth refiner and coarse Gaussian prediction, where we

can see that the two geometry-related designs benefit our
method to obtain better results.

4. Influence of pose distribution in the training
set.

Voxel-level features depend on the pose distribution in the
training set, which may adversely affect our generalizability
to unseen poses. However, this influence is effectively miti-
gated by incorporating pixel-level features and performing
coarse-to-fine Gaussian prediction, as demonstrated by the
results on the RenderPeople dataset in Table 5. As shown,
although the RenderPeople dataset contains diverse chal-
lenging poses, our method still outperforms the compared
methods, manifesting its advantage in generalizability.



Method PSNR↑ SSIM ↑ LPIPS ↓
NHP 26.01 0.9384 0.0726
GP-NeRF 25.33 0.9326 0.0792
TransHuman 26.37 0.9451 0.0579

w/o pixel-level features 26.42 0.9522 0.0546
w/o coarse-to-fine Gaussian prediction 26.58 0.9519 0.0594
Ours 27.00 0.9530 0.0519

Table 5. Results on RenderPeople dataset.

5. Ethics Statement
The datasets utilized in our research are sourced from

publicly available repositories, including THuman2.0 [7],
RenderPeople [1, 3], ZJU-MoCap [6], and one real-world
data [8]. Our research centers on the development of a
method for free-viewpoint rendering of unseen human
avatars, a technology poised to have significant implications
in various domains, particularly within virtual environments
such as the metaverse and video games. However, it is cru-
cial to recognize the potential misuse and ethical concerns
associated with this technology. The ability to manipulate
digital representations of individuals, particularly in photo-
realistic and indistinguishable ways, raises legitimate con-
cerns regarding privacy, identity theft, and the perpetration
of fraudulent activities. In light of these considerations, we
advocate for the responsible and ethical use of our research
findings.
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