7. Appendix
7.1. Proof of Theorem 1

In this subsection, we prove the soundness of our linear bounds in Theorem 1.

Proof. Define m = *H = (my,--- ,m,) € R™.

Upper linear bound:

Case 1: When l; = liaz A lmaz > uj, we havef(z1, - ,2,) = z; and u(zy,- -+ ,2,) = x; — l; + 1; = ;. Then, we
haveu(z) > f(x), that is, the upper linear bound of case 1 is sound.

Case 2: When l; = lynaq,u; > l; > ug, we have f(x1, - ,2,) = max(z;,z;) and u(zq, - ,2,) = x; — l; +
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Then, we have u(x) > f(x), that is, the upper linear bound of case 2 is sound.
Case 3: When l; = oz AL # Lz Auj > 1; > ug, we have f(zq, -, 2,) = maz(x;, z;) and w(z, -+ ,z,) =
27:;: ;i + x4+ 1.
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Then, we have u(x) > f(x), that is, the upper linear bound of case 3 is sound.

Case 4: First, we prove that if  and  do not satisfy case 1,2, and 3, then us, > max{l;, l;}.

We prove this by contradiction.

We assume that u, < maax{l;,[;}. Then, as up > I and up > maxsx; j x{up}, we have ug > maxpz; i {l,}.

And we have U0 = maz{ly, -, 1} = maz{l;,l;, up} = max{l;,l;}.

If loz = l;, then we have [; < uj A (I; < ug V I; > uj), thatis, [; < uj Al; < wy. It contradicts ug, < maz{l;,[;}.
if oz = Uj Alpmas # lio then we have I; > u; VI < uy, thatis [; < uy. It contradicts uy, < maxz{l;,[;}.
Therefore, in case 4, uy, > max{l;,[;}.

Here, we prove the upper bound in case 4 is sound.
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Then, we have u(x) > f(x), that is, the upper linear bound of case 4 is sound.
Lower linear bound:



Wz1, -, 2n) = x5 = argmaz;m;, and V(x1, - -+, 2p) € X7y [l;, wi),

f(l'la"' 7x7l) = maz(z1,~~ 7xn)
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Then, we have [(x) < f(z), that is the lower linear bound is sound.
This completes the proof. ]

7.2. Proof of Theorem 2

In this subsection, we prove Theorem 2.

Proof. First, u(x) and () are upper bound and lower bound for f(x). Therefore, u(x) > I(x), Ve € [l, u]. Then, we have
u(z) = l(x) = (u(z) - f(2)) + (f (=) - I(z))

(u(x) — f(x)) and (f(x) — I(x)) are not smaller than 0, when V& € [I, u].

Therefore, minimizing ff[l’u] (u(x)—I(x))dz is equivalent to minimizing both ff[l,u] (u(x)— f(x))dx and ff[l’u] (f(z)—
I(x))dz. The value of ff[l’u} f(x)dz is constant. Thus, it is also equivalent to minimizing ff[l,u] u(z)dz and
/ f[z,u] (=l(x))dx. Further, we define that lower linear bound [(-) is the neuron-wise tightest when —I(m) reaches the
minimum, and upper linear bound w(+) is the neuron-wise tightest when u(m) reaches the minimum.

Define x = (21, ,2,) and [n] = {1,2,--- ,n}. Because u(x) is a linear combination of z;,% € [n]. Without loss of
generality, we assume u(x) = @y, %; + by. Then,
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where m = (Yt ... Uatln) Agy,, 1,4 € [n] are constant, the minimize target has been transformed into minimizing
Symmetric to the above proof, minimizing ff(xl o)Ll w(xy, -+ ,xy)dx is equivalent to minimize —I(m).
This completes the proof. O

7.3. Proof of Theorem 3

In this subsection, we prove Theorem 3, that is, our linear bounds in Theorem 1 are the neuron-wise tightest.

Proof. Define m = "TH = (m,--- ,my) € R™.

Upper linear bound:

Case 1: When l; = lnax A lmas > uj;, we havef(zq, -+ ,2,) = @; and w(x, -, ) = & — L + 1, = x;. As
u(m) = f(m) < (m),Vu' € U, the upper bound is the neuron-wise tightest.

Case 2: When l; = lpmaz,u; > l; > ug, we have f(z1, -+ ,2,) = max(z;,x;) and u(zy, -+ ,2,) = z; — l; +
ot (= ) + .
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Therefore, the plane is the neuron-wise tightest upper linear bounding plane.
Case 3: When l; = lyaz AL # lmaz Auj > 1; > uyg, we have f(zq, -, x,) = maz(x;, z;) and w(zy, - ,z,) =
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We notice that

a = (uy, - ,Uj—1,lj,Uj41, - ,up) and b := (lh,--- ,lj—1,5, 41, -+ ,1,) are the space diagonal of X}, [I;, u;],
and

m = %(a—&—b). Similar to the proof in case 2, we can prove that the plane is the neuron-wise tightest linear upper bounding
plane.

Case 4: First, as proved in Section 7.1, uy, > max{l;,1;} in case 4.
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We notice that

a:= (I, - ,lj—1,uj,li41,- -, ln) and b := (u1,--- ,uj_1,1j,u41,- - ,uy)) are the space diagonal of x['_, [I;, u],
and m = %(a + b). Similar to the proof in case 2, we can prove that the plane is the neuron-wise tightest linear upper
bounding plane.

Lower linear bound:

W1, ,xn) = x; = argmaz;m;, and V(x1, - -+ ,2,) € X1y [l;, wil,
l(m) = f(mq, -+ ,my) >1'(m),Vl € L, hence, [(x1, - -, x,) is the neuron-wise tightest lower bounding plane.
This completes the proof. O

Table 4. The additional experimental setup and source of neural networks used in experiments.

Dataset Network #Nodes Accuracy #Properties € Source
Conv_-MaxPool 14592 81.9 81 2/255 ERAN
Convnet_MaxPool 25274 98.8 96 10/255 Verivital

MNIST
CNN, 4 layers 36584 99.0 94 3/255
CNN, 5 layers 52872 99.1 99 2/255
CNN, 6 layers 56392 99.1 99 2/255 CNN-Cert
CNN, 7 layers 56592 99.1 91 2/255
CNN, 8 layers 56912 99.3 99 2/255
Conv_MaxPool 57020 44.6 48 0.001 ERAN
CNN, 4 layers 49320 71.3 27 0.001

CIFAR-10 CNN. 5 layers 71880 71.1 16 0.001
CNN, 6 layers 77576 73.8 14 0.001 CNN-Cert
CNN, 7 layers 77776 75.6 29 0.001
CNN, 8 layers 78416 68.1 12 0.001
16p_Natural 26200 76.8 59 0.005
32p-Natural 49800 83.2 62 0.005

ModelNet40 64p_Natural 97000 85.7 64 0.005 3DCertify
64p_.FGSM 97000 86.0 66 0.01

64p_IBP 97000 78.1 60 0.01




Table 5. The performance of Ti-Lin on CNN-Cert (backsubstitution-based).

Certified Bounds(10~5) Bound Impr.(%) Average Runtime(min)
Dataset Network l, CNN-Cert Ti-Lin, on CNN-Cert vs. CNN-Cert CNN-Cert Ti-Lin, on CNN-Cert
CNN lso 1318 1837 394 1.8 1.7
4 layers Iy 4427 6478 46.3 1.4 14
36584 nodes [y 8544 12642 48.0 1.4 14
CNN lso 1288 1817 41.0 8.4 8.8
5 layers Iy 5164 7359 42.5 11.9 9.2
52872 nodes Iy 10147 14292 40.9 10.8 9.5
CNN lso 1025 1382 34.8 20.5 20.9
6 layers Iy 3954 5409 36.8 20.6 204
56392 nodes Iy 7708 10455 35.6 20.6 20.0
CNN lso 647 930 43.7 24.7 24.6
7 layers Iy 2733 4022 47.2 25.1 23.8
56592 nodes Iy 5443 8002 47.0 229 229
MNIST CNN lso 847 1221 44.2 26.5 26.7
8 layers lo 3751 5320 41.8 25.0 24.9
56912 nodes I 7515 10655 41.8 23.7 24.2
LeNet ReLU [ 1204 1864 54.8 0.2 0.2
3 layers lo 6534 10862 66.2 0.2 0.2
8080 nodes [ 17937 30305 69.0 0.2 0.2
LeNet Sigmoid ., 1684 2042 21.3 0.3 0.3
3 layers Iy 9926 12369 24.6 0.3 0.3
8080 nodes [ 26937 33384 23.9 0.3 0.3
LeNet Tanh [ 613 817 333 0.3 0.3
3 layers lo 3462 4916 42.0 0.3 0.3
8080 nodes [ 9566 13672 42.9 0.3 0.3
LeNet Atan [ 617 836 35.5 0.3 0.3
3 layers lo 3514 5010 42.6 0.3 0.3
8080 nodes  [; 9330 13345 43.0 03 0.3
CNN lso 108 129 19.4 3.1 2.9
4 layers Iy 751 1038 38.2 2.5 2.5
49320 nodes Iy 2127 3029 42.4 2.5 2.5
CNN loo 115 146 27.0 13.1 13.0
5 layers Iy 953 1342 40.8 12.4 12.7
71880 nodes [ 2850 4087 43.4 12.3 12.6
CNN lso 99 120 21.2 28.6 28.6
CIFAR-10 6layers I 830 1078 29.9 27.6 27.9
77576 nodes Iy 2387 3174 33.0 27.7 27.4
CNN lso 66 83 25.8 334 333
7 layers Iy 573 773 34.9 325 32.8
77776 nodes Iy 1673 2303 37.7 33.6 32.6
CNN lso 56 70 25.0 36.9 37.5
8 layers Iy 536 705 31.5 37.5 36.6
78416 nodes Iy 1609 2160 34.2 36.9 37.0
CNN lso 77 123 59.7 184.9 184.0
Tiny ImageNet 7 layers lo 580 939 61.9 184.4 183.3
703512 nodes Iy 1747 2875 64.6 193.6 183.9

7.4. Experiment setup

In this subsection, we present some experiment setups of Section 5 in detail. Concretely, we list the number of nodes, the
sources of networks, the number of Properties to be verified, and the perturbation range € in Table 4. Following the setting
of ERAN, we generate properties for all networks by the correctly classified inputs in the first 100 inputs. We evaluate our
method on four datasets, including MNIST, a dataset of 28 x 28 handwritten digital images in 10 classes, CIFAR-10, a dataset



Table 6. The performance of Ti-Lin and MaxPool2ReL.U on «, 5-CROWN verifier.

Certified accuracy(%)

Avg. time of safe instances(s)

Speedup

Network Radius MaxPool2ReLLU Ti-Lin MaxPool2ReLLU Ti-Lin vs. MaxPool2ReLU
0.008 56.8 65.4 32.5 17.3 1.9
MNIST-Conv_MaxPool 0.009 49.4 60.5 46.3 25.2 1.8
0.010 40.7 54.3 65.9 32.5 2.0
0.020 60.0 80.0 191.0 0.6 318.3
ConvNet_-MaxPool 0.030 15.0 50.0 377.5 37.5 10.1
0.040 0.0 20.0 - 44.2 -
Timeout rate(%) Avg. time of all instances(s) Speedup
Network Radius MaxPool2ReLU Ti-Lin MaxPool2ReLLU Ti-Lin vs. MaxPool2ReLU
0.008 37.0 28.4 494.9 65.5 7.6
MNIST-Conv_-MaxPool 0.009 43.2 32.1 667.8 77.4 8.6
0.010 50.6 37.0 770.1 88.7 8.7
0.020 20.0 0.0 294.6 0.7 420.9
ConvNet-MaxPool 0.030 60.0 20.0 549.5 104.7 52
0.040 45.0 5.0 566.1 47.5 11.9

Table 7. The performance of Ti-Lin and MaxPool2ReLU on ERAN framework.

Certified accuracy(%) Averaged Time(s) Speedup
Network Radius MaxPool2ReLU Ti-Lin MaxPool2ReLU Ti-Lin vs. MaxPool2ReLLU
0.006 24.7 69.1 645.3 18.5 349
MNIST_Conv_MaxPool 0.007 11.1 64.2 776.2 25.7 30.2
0.008 7.4 45.7 882.3 36.9 239
0.020 0.0 65.0 984.3 86.5 11.4
ConvNet_MaxPool 0.030 0.0 50.0 1022.5 153.5 6.7
0.040 0.0 35.0 973.6  149.6 6.5

of 60,000 32 x 32 x 3 images in 10 classes, e.g., airplane, bird, and ship, Tiny ImageNet [13], a dataset of 100,000 64 x 64 x 3
images in 200 classes, and ModelNet40, a dataset of 12,311 pre-aligned shapes from 40 categories.

7.5. Additional experiments

In this subsection, we conduct some additional experiments to further illustrate (I) the performance of Ti-Lin on CNN-Cert,
a back-substitution-based verifier. (II) We compare Ti-Lin to OSIP to illustrate the superiority of tight linear approximation
for MaxPool over the MaxPool2ReLLU transformation.

7.5.1. Results (I): performance on CNN-Cert

To compare Ti-Lin to CNN-Cert fairly, we implement Ti-Lin on CNN-Cert. We follow the metrics used in CNN-Cert. We
use the certified robustness bound introduced in Section 3 as the tightness metric and the average computation time as the
efficiency metric. As for the improvement of tightness, we use %g—q)% to quantify the percentage of improvement, where
¢; and ¢; represent the average certified lower bounds certified by Ti-Lin and CNN-Cert, respectively. We evaluate Ti-Lin and
CNNOCert on 10 inputs for all CNNs in Table 5. The initial perturbation range is 0.005. Testing on 10 inputs can sufficiently
evaluate the performance of verification methods, as it is shown that the average certified results of 1000 inputs are similar to
10 images [5]. The results are shown in Table 5. The results indicates that, under different networks, datasets, perturbation
norm(ly, ls, ), Ti-Lin’s certified bounds achieved better performance than CNN-Cert without incurring additional time
overhead. Specifically, Ti-Lin exhibits larger robustness bounds compared to CNN-Cert with improvements of up to 69.0,
43.3, 64.6% on the MNIST, CIFAR-10, and Tiny ImageNet datasets, respectively.
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Figure 3. Visualization of the global lower bounds verified by DeepPoly, 3DCertify, o, 3-CROWN, and Ti-Lin. Red dots represent the
deviation of the global bounds L — L’, where L and L’ represent the global bounds of Ti-Lin and other methods testing on 100 inputs,
respectively. Black lines represent the mean of the deviations.

7.5.2. Results (II): comparison to MaxPool2ReL U transformation method

Notably, as OSIP [26] is not open-sourced, we use another alternative method, called MaxPool2ReLLU for evaluation. Con-
cretely, we follow OSIP to transform the MaxPool-based network into a ReL.U-based network. ERAN, employing advanced
multi-ReLU relaxation for ReLU, and «a, 3-CROWN, leveraging the branch-and-bound technique for ReLU neurons, are
two cutting-edge verifiers designed for handling the ReLU layer. Therefore, we use the results of the transformed networks
tested by ERAN and «, B-CROWN as the alternative results of OSIP, denoted as MaxPool2ReLU. The results are shown in
Table 6 and Table 7. The results show that MaxPool2ReLU transformation would lead to coarse certified results and much
more time consumption. Concretely, Ti-Lin computes higher certified accuracy with up to 35% and 65% improvement than
MaxPool2ReLLU on «a, B-CROWN and ERAN, respectively. Further, Ti-Lin can accelerate the verification process with up
to 420.9x and 34.9x speedup regarding the average time of all instances on «, ~-CROWN and ERAN, respectively. This is
because the transformation would make the network deeper, leading to the cumulative overapproximation region and much
time consumption to verify. For example, when the pool size is 2 x 2, one MaxPool layer can be transformed into three
ReLU layers and three affine layers. Thus, Ti-Lin is much faster and tighter than MaxPool2ReLU. Especially when verifying
ConvNet_MaxPool, the verified accuracy of MaxPool2ReLU (ERAN) is zero across all perturbation radii, while Ti-Lin can
at least verify 35% inputs when the perturbation radius is 0.040, respectively.

7.5.3. Result (IIT): Evaluation on global lower bounds

According to Equation 2, we decide whether the perturbed region is safe based on [/ — uf >0,j #t,j € [ng]. Therefore,
the global lower bounds L := (IX — uj{ ),J # t,j € [nk] is the raw criterion to evaluate the tightness. To further illustrate
the advantages of the neuron-wise tightness over other linear bounds, we analyze the global lower bounds of the last layer
computed by Ti-Lin and other methods, including DeepPoly, 3DCertify, and optimized linear bounds, used in «, 3-CROWN.
In Figure 3, we show the deviation of the global lower bounds of Ti-Lin and the baseline on CIFAR_Conv_MaxPool. The
z-axis represents the index of the global lower bound (labels without the true label), and the y-axis represents the deviations
between the global lower bounds. As shown in Figure 3, Ti-Lin has larger global bounds on all inputs than DeepPoly and
3DCertify and on most inputs than «, 3-CROWN. Further, the mean of the deviations L — L’ are all larger than zero. It
reveals that the neuron-wise tightest linear bounds can bring tighter output bounds than other methods. Consequently, Ti-Lin
can certify much larger certified accuracy than these methods in Table | and 3.

According to the BaB design of a;, 3-CROWN, we compare the global lower bound for verifying the property O(true label
agaist label 0) on ConvNet_MaxPool, with the results illustrated in Figure 4. Initially, at BaB round = 0, MaxLin achieves
a higher global lower bound compared to Ti-Lin. This is attributed to MaxLin’s block-wise tightest approach, which is
specifically designed for ReLU + MaxPool blocks, giving it an early advantage in representing tighter bounds before the
BaB analysis progresses. However, as the BaB process progresses, the a;, 5-CROWN verification framework employs plane-
cutting techniques for ReLU neurons. This enables Ti-Lin’s neuron-wise tightest method to leverage its finer granularity,
which significantly improves the global lower bound in later BaB rounds. Consequently, Ti-Lin surpasses MaxLin, achieving
a much higher global lower bound in the later stages of analysis. This comparison demonstrates that while MaxLin provides
better bounds in the initial stages, Ti-Lin’s more precise neuron-wise tightness proves to be advantageous for verifying
robustness after iterative BaB analysis.
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Figure 5. The deviation in global bounds between MaxLin and Figure 6. The deviation in global bounds between Hybrid-Lin
Ti-Lin when using the CROWN and a-CROWN frameworks. and MaxLin when using the CROWN and a-CROWN frame-
works.

7.5.4. Result (IV): Hybrid-Lin: a combination of Ti-Lin and MaxLin

MaxLin and Ti-Lin make distinct but non-contradictory claims. MaxLin provides the block-wise tightest upper linear bound
when the ReLU’s upper linear bound is u(x) = -*;(z — I), while Ti-Lin, being neuron-wise tightest, also achieves block-
wise tightest bounds when the ReLU’s upper linear bound is u(z) = 0 or u(x) = «. Thus, Ti-Lin outperforms MaxLin when
ReLU’s upper bound incurs no precision loss. Rather than competing, they complement each other in achieving optimal
bounding precision. To illustrate this, we introduce HybridLin, which uses MaxLin when one of the ReLU’ upper linear
bound is u(z) = -*;(x — [) while Ti-Lin when all the ReLU’s upper linear bound is u(z) = 0 or u(z) = x. In Figures 5
and 6, green points indicate positive deviation, red indicate negative. Figure 5 shows that when ReLLU’s upper linear bound
incurring precision loss, MaxLin’s performance varies, underscoring the importance of Ti-Lin in achieving tighter results.
Figure 6 shows that Hybrid-Lin, using Ti-Lin when ReLLU’s upper linear bound is precise, consistently achieves tighter
bounds than MaxLin.



