AdaDARE-~: Balancing Stability and Plasticity in Multi-modal LL.Ms through
Efficient Adaptation

Supplementary Material

A. Proof
A.1. Proof of Theorem 1

Theorem 1 Consider the optimization problem of minimiz-
ing the expected layer-wise loss:
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subject to the constraints:
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where p represents the desired sparsity ratio. Then, the op-
timal probabilities p; that minimize the expected loss are
given by:
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Here, H;; represents the i-th diagonal element of the
Hessian matrix, and &; is the i-th element of AG7 ¢,

Proof.
function

First, we derive a simpler form of the loss
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By leveraging that the gradient term at ©';, equals zero, and

E [@éfw' — @%usion)i] =(1-7) A@ZT’Z is independent of p;,
we obtain:
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To minimize Eq. (A.5) under the given constraints, we
then compute the expected squared difference:
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where we denote @« = v — 1 for simplicity. To solve
this constrained optimization problem, we construct the La-
grangian:
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where A > 0, p; > 0 are the Lagrange multipliers for the
sparsity, non-negativity constraint respectively. By deriving
the KKT conditions:
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Complementary Slackness:

pipi = 0. (A.10)
Primal and Dual Feasibility:
0<pi<LAZ0,p; =0. (A.1D)

For the case where p; > 0 (thus p; = 0), we have:
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This yields:
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Applying the sparsity constraint:
n
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and substituting 1 — p;:
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We can solve for \:
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Substituting A back, we have:
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and enforcing non-negativity finally yields the optimal so-
lution:
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A.2. Proof of Theorem 2

Theorem 2 Given the constraint E [H@
7, there exists an upper bound for ~:
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where J; represents the i-th element of the delta parameters
AOTH

Proof. Let us expand the expected L1 norm:
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Given the constraint, we have:
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