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A. Proof
A.1. Proof of Theorem 1

Theorem 1 Consider the optimization problem of minimiz-
ing the expected layer-wise loss:

argmin
P ℓ

E
[∥∥Θℓ

sftX ℓ
T −Θℓ

fusionX ℓ
T
∥∥2
2

]
, (A.1)

subject to the constraints:∑n
i=1 pi
n

>= p, and 0 ≤ pi < 1 ∀i. (A.2)

where p represents the desired sparsity ratio. Then, the op-
timal probabilities p∗i that minimize the expected loss are
given by:

p∗i = max(0, 1−
n(1− p)

√
Hiiδ2i∑n

j=1

√
Hjjδ2j

) ∀i. (A.3)

Here, Hii represents the i-th diagonal element of the
Hessian matrix, and δi is the i-th element of ∆ΘT ,ℓ.

Proof. First, we derive a simpler form of the loss
function

argmin
P ℓ

E
[∥∥Θℓ

sftX ℓ
T −Θℓ

fusionX ℓ
T
∥∥2
2

]
, (A.4)

By leveraging that the gradient term at Θl
sft equals zero, and

E
[
Θl

sft,i −Θl
fusion,i

]
= (1− γ)∆ΘT ,ℓ

i is independent of pi,
we obtain:

argmin
pi

E

[
n∑

i=1

Hii

(
Θl

sft,i −Θl
fusion,i

)2]
, (A.5)

To minimize Eq. (A.5) under the given constraints, we
then compute the expected squared difference:

L = E

[
n∑

i=1

Hii

(
Θl

sft,i −Θl
fusion,i

)2]

=

n∑
i=1

Hii

[
(1− pi)δ

2
i

(
γ − (1− pi)

1− pi

)2

+ piδ
2
i

]

=

n∑
i=1

Hiiδ
2
i (
α2 + 2αpi + p2i

1− pi
+ pi)

(A.6)

where we denote α = γ − 1 for simplicity. To solve
this constrained optimization problem, we construct the La-
grangian:

L =

n∑
i=1

Hiiδ
2
i

(
α2 + 2αpi + p2i

1− pi
+ pi

)
+

λ

(
p− 1

n

n∑
i=1

pi

)
−

n∑
i=1

µipi,

(A.7)

where λ ≥ 0, µi ≥ 0 are the Lagrange multipliers for the
sparsity, non-negativity constraint respectively. By deriving
the KKT conditions:
Stationarity Condition for each i:

Hiiδ
2
i ϕ

′ (pi)−
λ

n
− µi = 0 (A.8)

where:

ϕ′ (pi) =
d

dpi

[
(α+ pi)

2

1− pi
+ pi

]

=

[
2 (α+ pi) (1− pi) + (α+ pi)

2
]

(1− pi)
2

=
(α+ 1)

2

(1− pi)
2

=
γ2

(1− pi)
2

(A.9)

Complementary Slackness:

µipi = 0. (A.10)

Primal and Dual Feasibility:

0 ≤ pi < 1, λ ≥ 0, µi ≥ 0. (A.11)

For the case where pi > 0 (thus µi = 0), we have:

Hiiδ
2
i γ

2

1− p2i
=

λ

n
(A.12)

This yields:

pi = 1−
√

nHiiδ2i γ
2

λ
(A.13)

Applying the sparsity constraint:

n∑
i=1

(1− pi) = n (1− p) . (A.14)



and substituting 1− pi:

n∑
i=0

1−
√

nHiiδ2i γ
2

λ
= n (1− p) . (A.15)

We can solve for λ:

√
λ = γ

∑n
i=1

√
Hiiδ2i

n (1− p)

√
n,

λ = nγ2

(∑n
i=1

√
Hiiδ2i

n(1− p)

)2 (A.16)

Substituting λ back, we have:

pi = 1−
n (1− p)

√
Hiiδ2i∑n

j=1

√
Hjjδ2j

. (A.17)

and enforcing non-negativity finally yields the optimal so-
lution:

p∗i = max

0, 1−
n(1− p)

√
Hiiδ2i∑n

j=1

√
Hjjδ2j

 . (A.18)

A.2. Proof of Theorem 2

Theorem 2 Given the constraint E
[∥∥Θℓ

fusion −Θℓ
pre

∥∥
1

]
<

η, there exists an upper bound for γ:

γ ≤ η∑n
i=1 |δi|

, (A.19)

where δi represents the i-th element of the delta parameters
∆ΘT ,ℓ.

Proof. Let us expand the expected L1 norm:

E
[∥∥Θℓ

fusion −Θℓ
pre

∥∥
1

]
= E

[
n∑

i=1

∣∣Θℓ
fusion,i −Θℓ

pre,i

∣∣]

=

n∑
i=1

E
[∣∣Θℓ

fusion,i −Θℓ
pre,i

∣∣]
=

n∑
i=1

∣∣∣∣piΘℓ
pre,i + (1− pi)

(
Θℓ

pre,i +
γ

1− pi
δi

)
−Θℓ

pre,i

∣∣
=

n∑
i=1

|γδi|

(A.20)

Given the constraint, we have:

γ ≤ η∑n
i=1 |δi|

(A.21)
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