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Supplementary Material

A. Dataset
Part-Detection Task dataset description.

A.1. Part-ImageNet

PartImageNet[7] selects 158 classes from ImageNet and
groups them into 11 super-categories. For example,
quadruped super-category contains many animal cate-
gories. The part annotations are based on these super-
categories, as shown in Table 1.

Id Name Part Taxonomy

1 Quadruped head, body, foot, tail
2 Biped head, body, hand, foot, tail
3 Fish head, body, fin, tail
4 Bird head, body, wing, foot, tail
5 Snake head, body
6 Reptile head, body, foot, tail
7 Car body, tier, side mirror
8 Bicycle head, body, seat, tier
9 Boat body, sail
10 Aeroplane head, body, wing, engine, tail
11 Bottle body, mouth

Table 1. PartImageNet part taxonomy from [7].

Our method focuses on finer-grained part-concept align-
ment. We use CDL[15] to generate a general concept
space shared across all categories and leverage the distri-
bution differences between concepts of different categories
to distinguish the fine-grained alignment of different parts.
Therefore, we select the super-categories Quadruped,
Biped, Fish, Bird, Reptile from Part-ImageNet, as
they share a large portion of the local concept space.

A.2. PASCAL-Part

PASCAL VOC 2010 dataset[6] is a popular dataset used to
benchmark Object Detection models in which each image
has an annotation file containing bounding box coordinates
and class labels for each object. There are 20 classes present
in the dataset which can be categorized into 4 super cate-
gories namely Person, Animal, Vehicle, Indoor. Training
and validation contain 10,103 images while testing contains
9,637 images. The twenty object classes in Pascal VOC
2010 dataset are:
• Person: person
• Animal: bird, cat, cow, dog, horse, sheep

• Vehicle: aeroplane, bicycle, boat, bus, car, motorbike,
train

• Indoor: bottle, chair, dining table, potted plant, sofa, tv-
monitor

The PASCAL-Part Dataset[4]is a set of additional annota-
tions for PASCAL VOC 2010. It provides segmentation
masks for each body part of the object. Corresponding to
Part-ImageNet, we only select the Animal categories for
testing. Due to the overly fine-grained local annotations in
PASCAL-Part, we merge some part annotations into a sin-
gle label. For example, left eye and right eye are merged
into eye. The merged parts are as shown in Table.2:

Name Part Taxonomy

Bird beak, eye, head, neck, wing, torso, leg, foot, tail
Dog eye, muzzle, ear, head, neck, torso, leg, foot, tail
Cat eye, ear, head, neck, torso, leg, foot, tail
Cow eye, muzzle, ear, head, neck, torso, leg, tail
Sheep eye, muzzle, ear, head, neck, torso, leg, tail

Table 2. PASCAL-Part taxonomy.

B. Metric

To quantitatively evaluate the performance of CBMs in con-
cept inversion, we treat concept inversion as the prediction
for a part object detection task. We use two common met-
rics in object detection, mAP and mIOU, to quantify the
prediction results, thereby characterizing the effectiveness
of concept inversion.

mAP(mean Average Precision) is a widely used evalu-
ation metric in object detection tasks, designed to provide a
comprehensive assessment of a model’s performance across
multiple categories. It combines both precision and recall
metrics to evaluate how well a model can detect objects and
classify them correctly. In our task, we use mAP0.5 as the
metric to measure the precision of the concept inversion cor-
respondence. In concept inversion where IOU≥0.5, mAP
effectively reflects the part-part spurious correlation.

mIOU(mean Intersection over Union) is a widely used
evaluation metric in computer vision tasks, particularly in
semantic segmentation and object detection. It provides a
quantitative measure of the overlap between the predicted
and ground truth regions, reflecting the accuracy of the
model’s localization and segmentation capabilities. The
mIOU metric is particularly useful because it balances the



trade-off between precision and recall, ensuring that both
the coverage and the accuracy of the predicted regions are
evaluated. In our task, we use mIOU as the metric to mea-
sure the precision of the inversion relative to the target re-
gion. IOU effectively reflects the overlap ratio between the
concept inversion and the ground truth.

For each CBM to be evaluated, we use interpretability
methods to obtain the activation heatmaps of concepts in
the original image space. For example, we use GradCAM
in the baseline methods and the assignment matrix in our
proposed method to generate these heatmaps.

From the heatmap Hc, we select the top 60% of the high-
est values to identify the most salient regions. We then com-
pute the minimum bounding rectangle (MBR) that encloses
these selected regions. This MBR serves as the predicted
bounding box Bc for concept c. Formally, let Sc be the set
of coordinates corresponding to the top 60% of the values
in Hc. The predicted bounding box Bc is defined as:

Bc = MBR(Sc) (1)

where MBR(Sc) denotes the minimum bounding rectan-
gle that encloses all points in Sc.

C. Construction of Concept Set

According to previous work [8, 15], sharing a generic con-
cept space can improve model performance by encouraging
the model to learn more discriminative features from the in-
put local features, while also being more friendly for human
intervention. Building on the work of [15], which uses the
mutual information between VLM and LLM predictions to
filter concepts generated by LLMs, we adopt a similar ap-
proach but with a key difference. We use human-defined
concepts[13, 14] as the input prompt for In-Context Learn-
ing (ICL)[1, 2] to promote the generation of more generic
concept sets by the LLM. We’ve added this part of the code
to the supplementary material as well. The basic steps are
as follows:
• Setp 1: Use the Stanford CoreNLP[9] tool to split the

captions in the CC3M[11] dataset into objects.
• Step 2: Use the objects as category names to

prompt the LLM, with the prompt being(where we can
use human defined concepts for In-Context Learning):

• Step 3: Encode the concepts using the text encoder of
CLIP ViT-L/14 and filter out duplicate concepts with a
similarity score greater than 0.9.

• Step 4: Given a concept and an image-caption dataset,
let the X variable denotes the image-concept similarity as
measured by a CLIP, and the Y variable is a binary indi-
cator on the caption-concept correspondence according to
an LLM. Compute the Mutual Information(MI) between

Q: What are useful visual features for distinguishing a lemur in
a photo?
A: There are several useful visual features to tell there is a lem-
ur in a photo:
- four-limbed primate
- black, grey, white, brown, or red-brown body color
- wet and hairless nose with curved nostrils
- long tail
- large eyes
- furry bodies
- clawed hands and feet
Q: What are useful visual features for distinguishing a televis-
ion in a photo?
A: There are several useful visual features to tell there is a Cali-
fornia Gull in a photo:
- Gray body color
- White head and neck
- Yellow bill color
- Yellow legs
- Red spot near bill
- Long neck
- Dark eyes
- Gray wing color
Q: What are useful features for distinguishing a {category
name} in a photo?
A: There are several useful visual features to tell there is
a {category name} in a photo:
-

Table 3. In-Context Learning Prompt used for generating con-
cepts.

X and Y as:

MI =
∑
y∈Y

∑
x∈X

Px,y(x, y) log
Px,y(x, y)

Px(x)Py(y)
(2)

• Step 5: Based on the desired size of the concept set,
select the top-K concepts with the highest mutual infor-
mation.We use twice the number of categories for each
dataset as the size of the concept set.

• Step 6: For the target dataset, we obtain the category-
concept mapping matrix by prompting the LLM with the
following prompt:
Please just answer ”yes” or ”no”. Does the {category
name} usually have the visual attribute ”{concept}”?

D. Motivation of disentanglement
Visual Prior Pre-trained ViT models typically use the
[CLS] token to aggregate global image features. After pre-
training, the [CLS] token embedding effectively focuses on
the salient regions of the image. This has been extensively
discussed in previous works such as [3, 5, 10], and [12] uti-
lizes the relationship between [CLS] embeddings and patch
embeddings to achieve object localization. Inspired by this,
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Figure 1. Pairwise dot product similarity matrix of patch embed-
dings extracted from pretrained ViT.

in our DOT-CBM framework, since the [CLS] embedding
already possesses self-organizing capabilities for patch em-
beddings trained on large datasets, we explicitly use this
organization as the prior distribution for the patch embed-
ding set in the OT process. This approach not only retains
the inductive biases learned by the pre-trained model from
large datasets but also effectively integrates the global infor-
mation of each image into the OT process through the prior
distribution.

Disentanglement on Local representations Building
upon the Visual Prior, we further investigate the internal
characteristics of the patch embedding set. Specifically, we
compute the dot product similarity between each patch em-
bedding and all other patch embeddings, and we visualize
these similarities as a heatmap, as shown in Figure 1. By
distinguishing patches within the foreground from those in
the background using the foreground mask generated by
SAM (Segment Anything Model), we can clearly observe
the distinct differences between foreground and background
patches. Additionally, it is evident that both the intra-set
similarity among foreground patches and the intra-set simi-
larity among background patches are relatively high. From
a linear algebra perspective, if we consider the [CLS] em-
bedding vector as an aggregation of the patch embedding
vectors, then:

eCLS =

n∑
i=1

aiepatchi (3)

where n denotes the number of patches, and ai represents
the coefficients in the linear representation of the vectors.
This approach reveals, as a representation of global infor-
mation, the set of patch embeddings lacks sufficient disen-
tanglement internally. Therefore, we propose an orthogo-
nality disentanglement loss specifically designed for the in-
ternal structure of patch embeddings.

E. Comparison Experiment
In DOT-CBM, both modalities incorporate predefined com-
ponents: a pre-trained Backbone and a predefined concept
set. Therefore, we conduct separate comparison experi-
ments on different methods for these two components.

ImageNet CUB
Part-ImageNet CUB
mAP mIOU mAP mIOU

Only Change Concept Set

Human / 80.94 / / 48.21 0.59
LaBo 83.16 84.73 40.05 0.30 40.32 0.37
CDL 83.84 85.39 50.12 0.52 53.47 0.66

Only Change Visual BackBone

CLIP 82.77 84.67 49.14 0.41 53.08 0.54
MAE 83.19 84.34 47.83 0.50 52.26 0.60
DINOv2 83.84 85.39 50.12 0.52 53.47 0.66

Table 4. Comparison experiments on Visual Backbone and con-
cept set.

When the concept set changes, LaBo’s concept set is
also generated using an LLM. However, these concepts
rarely correspond to local visual features. Comparing the
concept generation processes of CDL and LaBo, we iden-
tify two main reasons: (1) Overly Simple Prompting; (2)
Lack of Visual Guidance. Despite LaBo’s high overall
performance, its class-specific concept set, which corre-
sponds to the Section 3.4 in the main text, has a 100% co-
occurrence rate within each class. This leads to a lack of
discrimination among similar image information, resulting
in low mAP and mIOU scores in the concept inversion pro-
cess. In contrast, the human-defined concept set, although
having lower overall performance, shows better correspon-
dence in inversion. The performance of the human-defined
concept set may be limited by its smaller size and poten-
tial errors in manual labeling. This phenomenon supports
our hypothesis that a shared part concept space can enhance
the correspondence of CBM concept inversion. Inspired by
this, we use human-defined concepts as prompts for ICL
when generating concepts with LLMs, treating the LLM-
generated concepts as an extension of the human-defined
concepts.

When the backbone changes, CLIP outperforms MAE
in both classification performance and mAP. CLIP’s large-
scale language-image alignment pre-training results in bet-
ter feature generalization and separability. In the inver-
sion process, particularly for IOU ≥ 0.5, CLIP’s image-text
alignment properties lead to higher prediction precision. On
the other hand, MAE, which is pre-trained using a Mask and
Generate approach, has better fine-grained features com-
pared to CLIP’s single-label supervision. This results in
better precision in the inversion process.
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Figure 2. Three hyperparameters variation

When the attribution changes. In our main experi-
ments, the visual set prior of DOT-CBM is derived from
the [CLS] token’s attention map. Additionally, our frame-
work supports advanced attribution methods (e.g., Rollout
[1]) to generate this prior. Experimental results demonstrate
that leveraging such methods yields superior part detection
performance. Among the baseline methods, ViT-based ap-
proaches (e.g., LaBo [2] and SparseCBM [3]) were also
evaluated using Rollout for part detection. Notably, our pro-
posed method consistently exhibited the best performance
across all comparisons.

Part-ImageNet CUB RIVAL

LaBo (Rollout) 40.21 40.58 41.33
SparseCBM (Rollout) 40.93 42.35 43.06
DOT-CBM (Attention) 50.12 53.47 50.93
DOT-CBM (Rollout) 52.94 56.18 52.83

Table 5. Part Detection comparison with Rollout attribution.

F. Computational Complexity Analysis
We also compare the computational complexity of CBMs
based on pre-trained models. Our method has slightly
higher FLOPs due to the OT optimization process and prior
computation, but this only accounts for 2.2% of the total
FLOPs. Additionally, the number of learnable parameters
in our model remains within an acceptable range.

Method FLOPs (×1012) Estimated Memory (GB)

LaBo 20.84(20.45) 16.45
DOT-CBM 26.61(26.04) 16.84

Table 6. Computational Complexity Comparison for Pretrained
model based CBM with Batch Size of 256. Gray numbers indicate
the FLOPs of pre-trained ViT and text encoder.

G. Places365 Experiments
Experiments on complex dataset Places365 validate that
DOT-CBM still perform well and shows correct concept in-

version. Adopting task-specific (eg. SSL or SFT) ViTs can
further enhance both prior accuracy and task performance.

Tiered	Seating ScreenStage	AreaPatch	Set	Prior

Figure 3. Prior and concept inversion for sample in Places365.
Origin	Prior SFT	Fine-TuneSSL	Fine-Tune

Figure 4. Prior in more complex cases (object + background).

S-CBM LF-CBM DOT-CBM DOT-CBM(SSL) DOT-CBM(SFT)

41.34 43.68 44.07 46.35 47.21

Table 7. Experiments on Places365-standard datasets.

H. Hyperparameter
The training process of DOT-CBM involves three tunable
hyperparameters. The impact of varying these parameters
on the model’s classification accuracy and inversion corre-
spondence metric (mAP) on the CUB dataset is shown in
Figure.2. Among them:

λ1: The mAP metric is highest at 0.2, but the classifica-
tion performance is generally negatively correlated with λ1.
Therefore, we choose a balanced value of 0.15.

λ2: A high value of λ2 negatively affects both the
model’s accuracy and inversion performance. Hence, we
set it to 0.1.

λ3: The classification accuracy is positively correlated
with λ3, but the inversion performance peaks around 0.75.
Therefore, we set it to 0.8 for a balanced trade-off.

For other implementation details, in addition to those
mentioned in the main text, we design the Adapter as a
three-layer MLP with a hidden layer size of 1096.

I. Visualization
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Figure 5. Visualization.
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