EchoMatch: Partial-to-Partial Shape Matching via Correspondence Reflection

Supplementary Material

A. Implementation Details

EchoMatch. For both the overlap predictor and the fea-
ture extractor, we use Diffusion Net [56]. For the overlap
predictor, we use three Diffusion Net blocks with a hidden
dimension size of 16. Similar to [3], our feature extractor
contains four Diffusion Net blocks with a hidden dimension
size of 128. We train each learning-based method (DPFM
and ours) for 60,000 iterations and use the final checkpoint
for evaluation on CP2P24 and PSMAL. For BeCoS, we use
the best-performing checkpoint on its validation split and
report results on its test split. We use 50 eigenfunctions
for our functional map module. For the predicted func-
tional map, we impose structured regularization [47] with
v = 0.5 and A = 100 as in [3]. Also, for the ground truth
functional map, we impose regularization by treating eigen-
functions as coefficients. To this end, we choose v = 0.5
and A = 10°. For our overlap prediction, we initialize the
temperature parameter 7 = 0.1 for the soft point map and
treat it as a learnable parameter during training. We estab-
lish the final point-to-point correspondences for every point
in the predicted overlap region by computing the nearest
neighbour of each vertex in Fy in Fy. As described in the
main paper, the total loss is the unweighted summation of
three losses: functional map 1088 Liyap, overlap loss Loy and
PointInfoNCE loss L.

Lot = Loy + Lfmap + Lice. @)

The PointInfoNCE loss contains two terms: a self-contrast
term L r and a cross-contrast term Lo

ane = AselfLself + )\croschross- (8)

We choose Ageif = 0.1 and Agross = 0.1.

Computational Resources. For the learning-based meth-
ods, DPFM and our method EchoMatch, we use five cores
of an Intel Xeon Gold 6148 CPU with 36GB RAM and an
NVIDIA RTX 5000 GPU with 32GB VRAM. For the ax-
iomatic methods SM-COMB and GC-PPSM, we use an In-
tel Xeon E5-2697 with 16 cores and 36GB of RAM.

B. Dataset Split Details

We evaluate our method on three benchmark datasets for
partial-to-partial shape matching: CP2P, PSMAL, and Be-
CoS. Below, we detail the dataset splits and configurations
used in our experiments.

CP2P. The CP2P dataset (Cuts-Partial-to-Partial), first in-
troduced in DPFM [3], is derived from the SHREC16
dataset [15] and the TOSCA dataset [10]. For our main
experiments, we refer to the setup from [24] as CP2P24,
where 120 shapes from the SHREC16 CUTS training set
are used to generate 1164 training pairs, and evaluation is
performed on 100 test pairs sampled from 153 shapes in the
SHREC16 CUTS24 test set. For ablation studies, we refer
to the original DPFM setup [3] as CP2P21, where the data is
split into 242 training pairs and 61 validation pairs derived
from SHREC16 CUTS training set.

PSMAL. The PSMAL dataset (PARTIALSMAL) [24],
is derived from the SMAL [66] dataset and features non-
isometric, normalised partial shapes of animals. The dataset
includes 49 distinct shapes across 8 animal species. We
follow a train/test split based on species, ensuring that the
training and test sets contain different animal categories.
This results in 273 training pairs and 100 test pairs.

BeCoS. BeCoS [23] is the most challenging dataset in our
evaluation, containing non-isometric, realistically scaled
partial shapes of humanoids and animals. It is the only
partial-to-partial shape matching dataset with a structured
train/validation/test split, containing 10,185 train, 137 vali-
dation, and 142 test instances. Evaluations are conducted in
both directions for each pair. In all our experiments, we use
a subset of the first 701 train instances, resulting in 1,402
training pairs. For ablation studies, we report results on the
validation split.

C. Time Measurements

In Table A.1, we show the computation time for EchoMatch
in comparison to the baseline methods. The axiomatic
methods (SM-COMB and GC-PPSM) do not need any
training time. Nevertheless, they are slower during infer-
ence. Both supervised learning-based methods (DPFM and
EchoMatch) require similar time for training and inference.

D. Ablation Studies
D.1. Impact of Losses

We evaluate the influence of the different loss terms in
Table A.2. To this end, we ablate on the BeCoS valida-
tion set [23] and CP2P21 dataset as described in Sec. B.
For the evaluation, we consider both the overlap predic-
tion in terms of the mean Intersection over Union (mloU),



Training Inference
Method (whole set) (per shape pair)
SM-COMB [54] N/A 0.1h
GC-PPSM [24] N/A 3.1h
DPFM [3] 4.8h 0.18s
Ours 5.4h 0.20s

Table A.1. We show the mean computation time for our method
in comparison to the baseline methods. Axiomatic methods do not
require any training time but are slow during inference. DPFM
and our method require similar time for training and inference.

as well as the correspondence quality in terms of mean
geodesic error (mGeoError). Our overlap loss Ly is essen-
tial for achieving reasonable overlap predictions (without
Ly, mloU is zero, cf. first row in Table A.2).

For the functional map loss Lgy,p, We see a positive
influence on the CP2P21 dataset due to its isometric na-
ture and the low-pass smoothing effect from the functional
map. On the more challenging BeCoS dataset, Ly, dete-
riorates the performance, which might stem from the severe
non-isometries and challenging high-frequency partialities
present in the dataset.

The PointInfoNCE loss L, boosts the performance on
the BeCoS dataset as it operates on high-frequencies and
is more robust to non-isometries. Yet, L,. alone with-
out Ly, is insufficient on the CP2P21 dataset showing in-
ferior performance, which we attribute to the high-quality
DINOV2 features on the CP2P21 dataset due to intra-class
matchings. Specifically, in the BeCoS dataset, shapes from
different classes (e.g. elephant and cat) are matched. Dif-
ferent geometric properties of shapes from different classes
lead to less accurate DINOv2 features, which explains the
greater importance of Ly... On the other hand, the CP2P21
dataset only includes matches between the same shape cate-
gory resulting in similar geometric properties and thus lead-
ing to more accurate DINOvV2 features. This requires less
contribution of the L, and the high-frequency informa-
tion from L, in this context can potentially over empha-
size fine-grained details, leading to overfitting.

We found that combining all losses is the best general
trade-off. With that, we are able to use fixed relative loss
weights and achieve overall high-quality performance with-
out dataset-specific weight tuning.

D.2. Application to General Shape Matching

To evaluate the impact of the EchoModule we analyse the
performance in terms of geodesic error in the partial-to-
full (P2F) and in the full-to-full (F2F) case. For F2F, we
apply our losses directly to echoed scores (we bypass the
“Overlap DiffusionNet” since we have 100% overlap). Our
module reduces geodesic error in both cases.

CP2P21 BeCoS

Losses mloU (1) mGeoError ({)|mIoU (1) mGeoError ({)
Lfmap + Lince 0 6.43 0 8.03
Loy + Limap 73.36 7.12 59.79 9.39
Lov + Lnce 67.71 10.84 69.94 6.94
Loy + Lfmap + Lnce| 71.07 7.23 67.43 7.80

Table A.2. We show the mean Intersection over Union (x100)
and mean geodesic error (x 100) for different loss combinations.
Overall, combining all three losses shows the best generalisation
capabilities over both datasets.

Geo.Err. w/o Echo w/ Echo(Raw) w/ Echo(Complete)

BeCoS P2F  5.53 5.30 5.24
BeCoS F2F  3.95 3.70 -

Table A.3. Application to Partial-to-Full (P2F) and Full-
to-Full (F2F) shape matching: Our EchoModule reduces the
geodesic error in both P2F and F2F settings.
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Figure A.1. Overlap Percentage Analysis: With increasing
amount of overlap all method perform better in terms of mean
IoU on the CP2P24 dataset (left). With high percentage of the
full shape (> 75% and 50 — 75%) the mIoU improves (right).

E. Analysis of Pattern of Incompleteness

We analyse the overlap prediction (mloU) of partial-to-
partial shape matching methods on the CP2P24 dataset in
terms of overlap percentage (see Figure A.1 left). All meth-
ods improve with larger overlaps. In the per-shape anal-
ysis (see Figure A.l right) the mloU increases when both
shapes are more complete (> 75% and 50 — 75%).

F. Qualitative Results
F.1. More Qualitative Results on Different Datasets

We show additional qualitative results in Figure A.5 and A.6
on the CP2P24, PSMAL and BeCoS datasets. The ax-
iomatic methods SM-COMB and GC-PPSM can only solve
the matching on low resolution, which results in false patch-
wise overlaps or false correspondences (see red ellipses
in Figures A.5 and A.6). DPFM mostly struggles with
inaccurate overlap predictions. Consequently, the corre-
spondence predictions on the wrongly matched overlapping
parts are often of low quality (see red ellipses in Figures A.5
and A.6).
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Figure A.2. We show the uncut PCK curves for the different partial-to-partial shape matching methods on three different datasets with
DINOV?2 features (solid). We also add the corresponding curves for spatial coordinate input (dashed) for completeness.
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Figure A.3. Training progress comparison on CP2P24 and PSMAL datasets w.r.t the mloU metric. We show the training curves for both
DPFM and our method with DINOv2 features (solid) and spatial coordinates as inputs (dashed). Both methods are trained and stopped at
60000 iterations. Our method consistently achieves higher mean IoU scores throughout the whole training.

F.2. Failure Cases

We show failure cases of our method in Figure A.4. Espe-
cially on the very challenging BeCoS dataset, our method
shows inaccurate overlapping region predictions and inac-
curate correspondence predictions. These likely stem from
scanning artefacts which introduce significant noise.
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Figure A.4. We show failure cases of our method on the chal-
lenging BeCoS dataset. Due to the scanning artefacts the partial

shapes have very challenging geometry, which makes it difficult
for our method to predict good overlap regions.

G. Full Geodesic Error Curves

For better visualisation, we show cut geodesic error curves
in Figure 5. For completeness, we add the uncut geodesic
error curves in Figure A.2.

H. Training Details and Convergence Analysis

We provide a detailed analysis of the training progression
for both our method and DPFM. Each model is trained and
stopped at 60,000 iterations on the CP2P24 and PSMAL
datasets. As shown in Figure A.3, our method exhibits
faster convergence and achieves better performance across
both datasets.
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Figure A.5. We show qualitative results on CP2P24, PSMAL and BeCoS for all methods: the two axiomatic methods SM-COMB and
GC-PPSM as well as the two learning based methods DPFM and our EchoMatch. Our method shows the most accurate overlap predictions

and smoothest matchings. We mark incorrect predictions with red ellipses, which include both matching errors from GC-PPSM and SM-
COMB (due to lower shape resolution) and overlap prediction errors from DPFM.
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Figure A.6. Additional qualitative comparison between EchoMatch and baseline methods. While our method generally outperforms
baselines as in Figure A.5, these examples also showcase some challenging cases where our method also fails.



	Introduction
	Related Work
	Shape Matching
	Neighbourhoods in Matching
	Feature Descriptors for Partial Shape Matching

	Background
	Our EchoMatch Method
	Experimental Results
	Partial Shape Matching Datasets
	Shape Matching Methods
	Input Features
	Evaluation Metric
	Results
	Ablation Studies

	Limitations and Future Work
	Conclusion
	Implementation Details


	Dataset Split Details
	Time Measurements
	Ablation Studies
	Impact of Losses
	Application to General Shape Matching

	Analysis of Pattern of Incompleteness
	Qualitative Results
	More Qualitative Results on Different Datasets
	Failure Cases

	Full Geodesic Error Curves
	Training Details and Convergence Analysis



