EnvGS: Modeling View-Dependent Appearance with Environment Gaussian

Supplementary Material

In the supplementary material, we provide more quali-
tative and quantitative results and per-scene breakdowns to
demonstrate the effectiveness and robustness of our method
(Sec. A). We also provide additional ablation studies to fur-
ther analyze the key components of our method (Sec. B).
Furthermore, we provide details on the gradient computa-
tion of our Gaussian tracer (Sec. D).

Accurate and smooth reflection reconstruction and ren-
dering are key advantages of our method. We strongly en-
courage readers to view the rendered continuous videos in
the supplementary material for a more comprehensive un-
derstanding of its performance.

A. Additional Results

A.1. Comparison on Reflective Regions

To demonstrate the improvements in the reflective and near-
field reflection regions using our environment Gaussian rep-
resentation, we additionally annotate a reflection mask to
compute metrics specifically for the reflective region and
a near-field mask to evaluate near-field reflections on the
Ref-Real [37] and NeRF-Casting [38] datasets. As shown
in Tab. 2 and Fig. 6, our method achieves a significant im-
provement of over 1.0 PSNR 1" improvement on the reflec-
tive region and 2.0 PSNR 7 in the near-field regions com-
pared to using an environment map. These results highlight
the effectiveness of our approach in capturing and rendering
complex reflective and near-field phenomena.

Nl Y
4

3DGS-DR Oursw/envmap Ours w/o LPIPsloss Ours Ground Truth

Foreground Mask Near-field Mask

Figure 6. Qualitative comparison on reflective foreground and
near-field reflection regions. We also provide visualizations of
the foreground and near-field region mask we annotated.

The reflective masks mentioned above are obtained
through the following steps. First, we train our EnvGS on
each scene, then export the trained Gaussian and remove
the Gaussian points in 3D space except for those in the fore-
ground reflective region. We render the remaining Gaussian
to generate an accumulated alpha map. Finally, we binarize
this alpha map to obtain the foreground reflective masks.
We manually annotate the near-field masks as they are dif-
ficult to define in 3D space.

The quantitative results in Tab. 2 are evaluated only in the
masked regions, following NeRF-Casting [38], we compute
these masked metrics by blending the masked regions onto
a white background.

A.2. Comparison on Real-World Shiny Scenes

We present additional qualitative comparisons on the NeRF-
Casting Shiny Scenes [38], including both indoor and out-
door real-world scenes featuring complex reflections. As
shown in Fig. 9, our method significantly outperforms pre-
vious approaches in reflection fidelity and overall rendering
quality, particularly excelling in near-field reflections and
high-frequency reflection details.

We also provide per-scene breakdowns of Ref-Real [37]
and NeRF-Casting Shiny Scenes [38] in Tab. 7. These re-
sults are consistent with the averaged results in the paper.
All metrics are evaluated at the original resolution down-
sampled by a factor of 4, following prior works [38]. No-
tably, our method is more general and does not rely on
manually estimated bounding boxes for foreground objects,
which are essential for 3DGS-DR [51] to prevent optimiza-
tion failure.

A.3. Comparison on Shiny Blender [37]

In Tab. 8, Fig. 10 and Fig. 11, we present additional quan-
titative and qualitative comparisons on the Shiny Blender
dataset [38], which is rendered with environment maps un-
der distant lighting assumption. The results show that al-
though being designed for robustness on real-world data,
our method effectively reconstructs accurate distant specu-
lar reflections, performing on par with or surpassing prior
methods GaussianShader [15] and 3DGS-DR [18] specifi-
cally designed for environment map lighting scenarios. En-
vGS considerably outperforms these methods in captur-
ing near-field reflections caused by self-occlusions, as il-
lustrated in the zoomed-in regions of the “toaster” scene.
Moreover, our method reconstructs more accurate geome-
try, as shown in Fig. 11.

A.4. Comparison on Mip-NeRF 360 [3]

We perform additional comparisons on the Mip-NeRF 360
dataset [3], which consists of large-scale real-world scenes
with primarily diffuse appearance and complex geometry.
As shown in Tab. 9, our method is not limited to reflective
scenes and can achieve comparable or superior performance
to both state-of-the-art implcit [4] and explicit [17] meth-
ods.

Ref-Real [37] and NeRF-Casting [38]

Methods

PSNR1 SSIM{1 LPIPS| FPS?
ENVIDR 15.890 0.416 0.607 0.058
NDE 19.399 0.422 0.593 0.083
Ours 27.947 0.794 0.189 26.221

Table 5. Quantitative comparison with object-level methods.

Ground Truth

ENVIDR NDE Ours

Figure 7. Qualitative comparison with object-level methods.

A.5. Additional Baselines

We also compare our method with object-baselines includ-
ing ENVIDR [22] and NDE [45]. While object-level meth-
ods perform well on synthetic data, they often struggle with
real-world scenes and cannot real-time rendering speed on
scenes with background, as shown in Tab. 5 and Fig. 7.

B. Additional Ablation Studies

B.1. Environment Representation Comparison

As described in Sec. 5.4, the environment representation
plays a crucial role in capturing complex reflections. In
Fig. 8, we provide additional qualitative comparisons be-
tween our environment Gaussian representation and the en-
vironment map representation. The “w/ env. map 128”
and “w/ env. map 256" variants replace our core environ-
ment Gaussian representation with environment maps using
six cubemaps at resolutions of 128 and 256, respectively.
The results demonstrate that both environment map vari-
ants fail to capture the near-field reflections and tend to blur
high-frequency reflection details, whereas our environment
Gaussian representation excels at capturing complex reflec-
tions with high fidelity.

B.2. Speed Analysis

We conduct additional speed ablations on the “hatchback”
from the NeRF-Casting Shiny Scenes [38] with resolution
3504 x 2336 (which we downsample by a factor of 4, as
done in all baselines and experiments). The results are listed
in Tab. 6.

Differentiable Gaussian tracing. As discussed in Sec. 4.2,
rendering the environment Gaussian primitives with rasteri-
zation is impractical due to the uniqueness of each reflected
ray. To validate this, we compare two alternative rendering
strategies: (1) manually computing the ray-primitive inter-

map 256 w/ env. map 128

Ours

Figure 8. Qualitative comparison between the environment
map representation and our environment Gaussian repre-
sentation. Replacing the environment map with our environ-
ment Gaussian representation significantly improves the render-
ing quality, especially in capturing near-field reflections and high-
frequency reflection details.

sections using PyTorch in a chunk-based manner (“w/ Py-
Torch”), and (2) rasterizing the environment Gaussian prim-
itives with a modified 3DGS [17] rasterizer using 1x1 tiles
(“w/ 1x1-tile rasterizer”). All three methods, including our
Gaussian tracer, apply the same volume rendering equation
as in Eq. 2. Quantitative results in Tab. 6 reveal that both
alternative strategies take over an hour to render a single
frame, whereas our Gaussian tracer achieves real-time ren-
dering speeds, leveraging hardware-accelerated ray tracing.

PSNR{ SSIM{ LPIPS| FPS?

w/ PyTorch - - - 1/6157.613
w/ 1x1-tile rasterizer - - - 1/11902.431

w/ 50% weight filting 27.137 0.824 0.192 36.216
w/ 75% weight filting 27.104 0.823 0.192 41.824
w/ 80% weight filting 27.033 0.822 0.193 44.215
w/ 90% weight filting 26.695 0.816 0.197 47.149

Ours 27.220 0838 0.177 32.259

Table 6. Runtime analysis of the proposed method on the
hatchback of NeRF-Casting Shiny Scenes [38]. Rasterization
or PyTorch-based ray tracing is impractical for rendering the envi-
ronment Gaussian primitives. The acceleration techniques lead to
minimal quality changes as shown by the cell.

Rendering speed analysis. As mentioned in Sec. 4.1, the
rendering of our method consists of two main rounds: ras-
terization of the base Gaussian and ray tracing of the en-

GaussianShader

3DGS-DR Ours

Ground Truth

Figure 9. Qualitative comparison on real scenes. Our method significantly improves rendering quality over previous approaches, partic-

ularly in producing more detailed reflections. Zoom in for more details.

vironment Gaussian, and the final color is the blending of
the two. Based on the fact that only a small portion of the
scene surface contains strong specular reflections, we can
further accelerate the rendering process by only tracing rays
with high blending weights, which are only made possible
by our tracing-based renderer. We ablate the effectiveness
and quality impact of this acceleration technique, results are
shown in Tab. 6.

B.3. Environment Gaussian Design

The Necessity of using a separate environment Gaussian
primitives. To evaluate the decision to use separate Gaus-
sian primitives for reflection modeling, we perform an ex-
periment using a single set of Gaussian primitives for both
reflection and base scene modeling. We first trace a camera
ray to obtain the base color, normal and rendering weight,

then trace a secondary ray to render the reflection color, ul-
timately combining these results using Eq. (5) to get the
final color. However, we found that the experiment con-
sistently failed to converge due to unavoidable interference
between suboptimal geometry during optimization and in-
correctly hitting Gaussian primitives from erroneous reflec-
tion directions, leading to an unstable training process.

C. Details of Environment Gaussian

We provide more details of our base Gaussian and environ-
ment Gaussian. The SH coefficients of both base Gaussian
and environment Gaussian are set to two for the best re-
sults. The environment Gaussian is jointly optimized with
the base Gaussian, and environment Gaussian constitutes
around 15% of the base Gaussian, of average 300k Gaus-

ball

car

helmet

toaster

GaussianShader

3DGS-DR Ours

Ground Truth

Figure 10. Qualitative comparison on synthetic scenes. Despite being designed for robustness on real-world data, our method effectively
reconstructs accurate distant specular reflections and effectively captures near-field reflections caused by self-occlusions.

sian primitives using 70MB after training. For pruning, we
follow the pruning method in the original 2DGS [13] and
keep at most the top 630k environment Gaussian primitives
based on rendering weights.

D. Details of Gradient Computation

To enable the joint optimization of base Gaussian and en-
vironment Gaussian primitives, which is essential for ac-
curate geometry recovery and reflection reconstruction (as
demonstrated in Sec. 5.4), our Gaussian tracer must be fully
differentiable. This requires computing gradients with re-
spect to the input reflected ray origin, %, and direction,
%. These gradients are backpropagated through the sur-
face position x and normal n, obtained during the first ras-
terization stage, to the base Gaussian parameters for joint

optimization.
Consider an input ray with origin o and direction d, and
a intersected triangle primitive ¢ with vertices v, vo, V3.
During ray traversal, the OptiX kernel utilizes the GPU’s
RT core to determine the intersection depth ¢;, which is then
used to compute the interaction position as x; = o + t;d.
This position is subsequently transformed into the local tan-
gent plane of the corresponding 2D Gaussian, yielding u;
via Eq. 6 for Gaussian value evaluation. Note that the ray-
triangle intersection depth can be manually computed as:
n (vi —o)

ti= n;'—d ’

12)

where n; = (vo —v1) X (v3—vy) is the normal direction of
the triangle. Then, we can apply the chain rule to calculate

ball

car

coffee

toaster

2DGS GaussianShader 3DGS-DR Ours

Figure 11. Qualitative comparisons of normal produced by different methods.

the derivatives w.r.t. the ray origin and direction:

%_dﬁdxijL%ﬁ
do dx; do dt do

_dc L -, (13)
o dx; dt n/d’
and
dc_aca acu
dd ~ dx;dd | dt ad
(14)

_dL £ dZ —n] (v —o)
S dx; 0 dt n;-(n/d)?

This gradient flow enables the joint optimization of the
reflection appearance of environment Gaussian alongside

the geometry and base appearance of base Gaussian, en-
hancing both geometry accuracy and reflection fidelity.

Ground Truth

Ref-Real [37] NeRF-Casting Shiny Scenes [38]

PSNR 1 Methods
sedan toycar spheres compact grinder hatchback toaster
Ref-NeRF* [37] 25.390 22750 21.120 30.550 33.910 25.210 32.660
Non real-time UniSDF [39] 24.680 24.150 22.270 29.720 33.720 27.010 32.900
ZipNeRF [4] 25.850 23410 21.770 31.100 34.670 27.780 33.410
NeRF-Casting [38] 26.770 24200 23.040 29.730 34.000 27.490 32.870
3DGS [17] 25240 23910 21.950 28.945 30.885 26.201 29.410
2DGS [13] 25.065 24282 22.064 28.415 30.164 25.893 28.630
Real-time GaussianShader [14] 24.081 23.137 21.408 27.474 26.572 24.959 26.641
3DGS-DR [51] 25.445 23.582 21.539 28.692 30.129 25.985 29.141
Ours 26.156 24.746 22.949 29.608 33.331 27.220 31.618
Ref-Real [37] NeRF-Casting Shiny Scenes [38]
SSIM t Methods
sedan toycar spheres compact grinder hatchback toaster
Ref-NeRF* [37] 0.721 0.612 0.542 0.907 0.880 0.842 0.932
Non real-time UniSDF [39] 0.700 0.639 0.567 0.895 0.879 0.845 0.937
ZipNeRF [4] 0.733 0.626 0.545 0.913 0.887 0.870 0.944
NeRF-Casting [38] 0.739 0.641 0.597 0.884 0.882 0.853 0.938
3DGS [17] 0.713 0.636 0.573 0.877 0.864 0.838 0.928
2DGS [13] 0.704 0.662 0.595 0.857 0.854 0.819 0.917
Real-time GaussianShader [14] 0.668 0.625 0.573 0.851 0.799 0.805 0.884
3DGS-DR [51] 0.714 0.635 0.571 0.857 0.849 0.813 0.914
Ours 0.727 0.667 0.619 0.871 0.895 0.838 0.938
Ref-Real [37] NeRF-Casting Shiny Scenes [38]
LPIPS | Methods
sedan toycar spheres compact grinder hatchback toaster
Ref-NeRF* [37] 0.270 0.257 0.257 0.105 0.123 0.156 0.111
Non real-time UniSDF [39] 0.309 0.245 0.243 0.122 0.132 0.160 0.107
ZipNeRF [4] 0.260 0.243 0.238 0.096 0.111 0.130 0.082
NeRF-Casting [38] 0.254 0.246 0.238 0.148 0.114 0.155 0.096
3DGS [17] 0.301 0.237 0.248 0.154 0.181 0.179 0.123
2DGS [13] 0.344 0.246 0.254 0.193 0.217 0.215 0.147
Real-time GaussianShader [14] 0.371 0.293 0.278 0.189 0.289 0.217 0.169
3DGS-DR [51] 0.322 0.249 0.251 0.196 0.219 0.228 0.146
Ours 0.287 0.208 0.229 0.159 0.151 0.177 0.110

Table 7. Ref-Real [37] and NeRF-Casting [38] per-scene breakdowns. All metrics are evaluated at the original resolution downsample
by a factor of 4 as prior works [38].

PSNR 1

Methods

Shiny Blender Scenes [37]

ball car coffee helmet teapot toaster
Ref-NeRF [37] 47.460 30.820 34.210 29.680 47.900 25.700
Non real-time UniSDF [39] 44.100 29.860 33.170 38.840 48.760 26.180
NeRF-Casting [38] 45.460 30.450 33.180 39.100 49.980 26.190
3DGS [17] 27.650 27.260 32.300 28220 45.710 20.990
2DGS [13] 25990 26.730 32360 27.300 44.940 20.272
Real-time GaussianShader [14] 29.081 26.940 31.147 28.883 43.379 23.584
3DGS-DR [51] 33.533 30.236 34580 31.518 47.038 26.823
3iGS [36] 27.640 27.510 32.580 28.210 46.040 22.690
Ours 32.567 30.598 34312 31470 46.582 27.427
Shiny Blender Scenes [37]
SSIM 1 Methods
ball car coffee helmet teapot toaster
Ref-NeRF [37] 0.995 0.955 0.974 0.958 0.998 0.922
Non real-time ~ UniSDF [39] 0.993 0.954 0.973 0.990 0.998 0.945
NeRF-Casting [38] 0.994 0.964 0.973 0.988 0.999 0.950
3DGS [17] 0.937 0.931 0.972 0.951 0.996 0.894
2DGS [13] 0.935 0.932 0.973 0.952 0.997 0.892
Real-time GaussianShader [14] 0.955 0.930 0.969 0.955 0.996 0.907
3DGS-DR [51] 0.979 0.957 0.976 0.971 0.997 0.943
3iGS [36] 0.938 0.930 0.973 0.951 0.997 0.908
Ours 0.971 0.958 0.974 0.968 0.997 0.945
Shiny Blender Scenes [37]
LPIPS | Methods
ball car coffee helmet teapot toaster
Ref-NeRF [37] 0.059 0.041 0.078 0.075 0.004 0.095
Non real-time ~ UniSDF [39] 0.039 0.047 0.078 0.021 0.004 0.072
NeRF-Casting [38] 0.044 0.033 0.074 0.018 0.002 0.073
3DGS [17] 0.162 0.047 0.079 0.081 0.008 0.125
2DGS [13] 0.155 0.051 0.080 0.080 0.008 0.126
Real-time GaussianShader [14] 0.145 0.066 0.085 0.086 0.011 0.105
3DGS-DR [51] 0.104 0.038 0.076 0.050 0.006 0.082
3iGS [36] 0.156 0.045 0.076 0.073 0.006 0.099
Ours 0.138 0.037 0.085 0.052 0.006 0.077

Table 8. Quantitative results on Shiny Blender Scenes [37].

Mip-NeRF 360 [3]

PSNR t Methods
bicycle bonsai counter flowers garden kitchen room stump treehill
Ref-NeRF* [37] 24910 32290 26.020 21.630 27.450 31.610 31.680 25910 21.790
Non real-time UniSDF [39] 24670 32.860 29.260 21.830 27.460 31.730 31.250 26.390 23.510
ZipNeRF [4] 25.800 34460 29380 22400 28.200 32.500 32.650 27.550 23.890
NeRF-Casting [38] 24920 33.810 28.840 21.750 27310 32.260 31.660 25.640 23.220
3DGS [17] 25.250 31.980 28.700 21.520 27.410 30.320 30.630 = 26.550 22.490
2DGS [13] 24.741 31.246 28.107 21.131 26.723 30.372 30.679 26.123 22.427
Real-time GaussianShader [14] 23.103 29.278 26.639 20.267 26.290 27.125 24.098 24.668 20.552
3DGS-DR [51] 24.869 31.232 27.730 21.116 27.142 28999 30.068 25473 21.344
Ours 25209 31946 29.017 21.551 27.709 31.660 31.020 25.423 22.686

Mip-NeRF 360 [3]

SSIM 1t Methods
bicycle bonsai counter flowers garden kitchen room stump treehill
Ref-NeRF* [37] 0.723 0.935 0.875 0.592 0.845 0.922 0914 0.731 0.634
Non real-time UniSDF [39] 0.737 0.939 0.888 0.606 0.844 0.919 0.914 0.759 0.670
ZipNeRF [4] 0.769 0.949 0.902 0.642 0.860 0.928 0.925 0.800 0.681
NeRF-Casting [38] 0.747 0.945 0.887 0.605 0.836 0.924 0911 0.749 0.653
3DGS [17] 0.771 0.938 0.905 0.605 0.868 0.922 0.914 0.775 0.638
2DGS [13] 0.734 0.931 0.893 0.575 0.844 0.917 0.907 0.756 0.618
Real-time GaussianShader [14] 0.700 0.917 0.875 0.541 0.842 0.888 0.839 0.701 0.579
3DGS-DR [51] 0.740 0.933 0.889 0.578 0.852 0.908 0.904 0.750 0.607
Ours 0.734 0.933 0.899 0.589 0.854 0.923 0.910 0.726 0.621

Mip-NeRF 360 [3]

LPIPS | Methods
bicycle bonsai counter flowers garden kitchen room stump treehill
Ref-NeRF* [37] 0.256 0.182 0.213 0.317 0.132 0.121 0.206 0.261 0.294
Non real-time UniSDF [39] 0.243 0.184 0.206 0.320 0.136 0.124 0.206 0.242 0.265
ZipNeRF [4] 0.208 0.173 0.185 0.273 0.118 0.116 0.196 0.193 0.242
NeRF-Casting [38] 0.231 0.176 0.203 0.312 0.142 0.118 0.216 0.244 0.273
3DGS [17] 0.205 0.205 0.204 0.336 0.103 0.129 0.220 0.210 0.317
2DGS [13] 0.267 0.227 0.229 0.374 0.145 0.146 0.243 0.258 0.374
Real-time GaussianShader [14] 0.275 0.242 0.243 0.380 0.131 0.170 0.307 0.277 0.394
3DGS-DR [51] 0.254 0.230 0.231 0.368 0.135 0.151 0.247 0.248 0.375
Ours 0.233 0.180 0.194 0.339 0.112 0.120 0.207 0.262 0.347

Table 9. Quantitative results on Mip-NeRF 360 [3]. The results in “Non Real-time” are borrowed from NeRF-Casting [38], and Ref-
NeRF* is an improved version of Ref-NeRF [37] that uses Zip-NeRF’s [4] geometry model.

	Introduction
	Related Work
	Preliminary
	Method
	Reflective Scenes Modeling
	Differentiable Ray Tracing
	Optimization

	Experiments
	Implementation Details
	Datasets and Evaluation Metrics
	Baseline Comparisons
	Ablation Studies

	Conclusion and Discussion
	Additional Results
	Comparison on Reflective Regions
	Comparison on Real-World Shiny Scenes
	Comparison on Shiny Blender verbin2022refnerf
	Comparison on Mip-NeRF 360 barron2022mipnerf360
	Additional Baselines

	Additional Ablation Studies
	Environment Representation Comparison
	Speed Analysis
	Environment Gaussian Design

	Details of Environment Gaussian
	Details of Gradient Computation

