
EnvGS: Modeling View-Dependent Appearance with Environment Gaussian

Supplementary Material

In the supplementary material, we provide more quali-
tative and quantitative results and per-scene breakdowns to
demonstrate the effectiveness and robustness of our method
(Sec. A). We also provide additional ablation studies to fur-
ther analyze the key components of our method (Sec. B).
Furthermore, we provide details on the gradient computa-
tion of our Gaussian tracer (Sec. D).

Accurate and smooth reflection reconstruction and ren-
dering are key advantages of our method. We strongly en-
courage readers to view the rendered continuous videos in
the supplementary material for a more comprehensive un-
derstanding of its performance.

A. Additional Results
A.1. Comparison on Reflective Regions
To demonstrate the improvements in the reflective and near-
field reflection regions using our environment Gaussian rep-
resentation, we additionally annotate a reflection mask to
compute metrics specifically for the reflective region and
a near-field mask to evaluate near-field reflections on the
Ref-Real [37] and NeRF-Casting [38] datasets. As shown
in Tab. 2 and Fig. 6, our method achieves a significant im-
provement of over 1.0 PSNR ↑ improvement on the reflec-
tive region and 2.0 PSNR ↑ in the near-field regions com-
pared to using an environment map. These results highlight
the effectiveness of our approach in capturing and rendering
complex reflective and near-field phenomena.

3DGS-DR Ours	w/	env map Ours	w/o	LPIPs	loss Ours Ground	Truth Foreground	Mask Near-field	Mask

Figure 6. Qualitative comparison on reflective foreground and
near-field reflection regions. We also provide visualizations of
the foreground and near-field region mask we annotated.

The reflective masks mentioned above are obtained
through the following steps. First, we train our EnvGS on
each scene, then export the trained Gaussian and remove
the Gaussian points in 3D space except for those in the fore-
ground reflective region. We render the remaining Gaussian
to generate an accumulated alpha map. Finally, we binarize
this alpha map to obtain the foreground reflective masks.
We manually annotate the near-field masks as they are dif-
ficult to define in 3D space.

The quantitative results in Tab. 2 are evaluated only in the
masked regions, following NeRF-Casting [38], we compute
these masked metrics by blending the masked regions onto
a white background.

A.2. Comparison on Real-World Shiny Scenes

We present additional qualitative comparisons on the NeRF-
Casting Shiny Scenes [38], including both indoor and out-
door real-world scenes featuring complex reflections. As
shown in Fig. 9, our method significantly outperforms pre-
vious approaches in reflection fidelity and overall rendering
quality, particularly excelling in near-field reflections and
high-frequency reflection details.

We also provide per-scene breakdowns of Ref-Real [37]
and NeRF-Casting Shiny Scenes [38] in Tab. 7. These re-
sults are consistent with the averaged results in the paper.
All metrics are evaluated at the original resolution down-
sampled by a factor of 4, following prior works [38]. No-
tably, our method is more general and does not rely on
manually estimated bounding boxes for foreground objects,
which are essential for 3DGS-DR [51] to prevent optimiza-
tion failure.

A.3. Comparison on Shiny Blender [37]

In Tab. 8, Fig. 10 and Fig. 11, we present additional quan-
titative and qualitative comparisons on the Shiny Blender
dataset [38], which is rendered with environment maps un-
der distant lighting assumption. The results show that al-
though being designed for robustness on real-world data,
our method effectively reconstructs accurate distant specu-
lar reflections, performing on par with or surpassing prior
methods GaussianShader [15] and 3DGS-DR [18] specifi-
cally designed for environment map lighting scenarios. En-
vGS considerably outperforms these methods in captur-
ing near-field reflections caused by self-occlusions, as il-
lustrated in the zoomed-in regions of the “toaster” scene.
Moreover, our method reconstructs more accurate geome-
try, as shown in Fig. 11.

A.4. Comparison on Mip-NeRF 360 [3]

We perform additional comparisons on the Mip-NeRF 360
dataset [3], which consists of large-scale real-world scenes
with primarily diffuse appearance and complex geometry.
As shown in Tab. 9, our method is not limited to reflective
scenes and can achieve comparable or superior performance
to both state-of-the-art implcit [4] and explicit [17] meth-
ods.

1



Methods
Ref-Real [37] and NeRF-Casting [38]

PSNR ↑ SSIM ↑ LPIPS ↓ FPS ↑
ENVIDR 15.890 0.416 0.607 0.058
NDE 19.399 0.422 0.593 0.083
Ours 27.947 0.794 0.189 26.221

Table 5. Quantitative comparison with object-level methods.

ENVIDR NDE Ours Ground	Truth

Figure 7. Qualitative comparison with object-level methods.

A.5. Additional Baselines
We also compare our method with object-baselines includ-
ing ENVIDR [22] and NDE [45]. While object-level meth-
ods perform well on synthetic data, they often struggle with
real-world scenes and cannot real-time rendering speed on
scenes with background, as shown in Tab. 5 and Fig. 7.

B. Additional Ablation Studies
B.1. Environment Representation Comparison
As described in Sec. 5.4, the environment representation
plays a crucial role in capturing complex reflections. In
Fig. 8, we provide additional qualitative comparisons be-
tween our environment Gaussian representation and the en-
vironment map representation. The “w/ env. map 128”
and “w/ env. map 256” variants replace our core environ-
ment Gaussian representation with environment maps using
six cubemaps at resolutions of 128 and 256, respectively.
The results demonstrate that both environment map vari-
ants fail to capture the near-field reflections and tend to blur
high-frequency reflection details, whereas our environment
Gaussian representation excels at capturing complex reflec-
tions with high fidelity.

B.2. Speed Analysis
We conduct additional speed ablations on the “hatchback”
from the NeRF-Casting Shiny Scenes [38] with resolution
3504 × 2336 (which we downsample by a factor of 4, as
done in all baselines and experiments). The results are listed
in Tab. 6.
Differentiable Gaussian tracing. As discussed in Sec. 4.2,
rendering the environment Gaussian primitives with rasteri-
zation is impractical due to the uniqueness of each reflected
ray. To validate this, we compare two alternative rendering
strategies: (1) manually computing the ray-primitive inter-

w
/	
en
v.	
m
ap
	1
28

w
/	
en
v.	
m
ap
	2
56

Ou
rs

Gr
ou
nd
	T
ru
th

Figure 8. Qualitative comparison between the environment
map representation and our environment Gaussian repre-
sentation. Replacing the environment map with our environ-
ment Gaussian representation significantly improves the render-
ing quality, especially in capturing near-field reflections and high-
frequency reflection details.

sections using PyTorch in a chunk-based manner (“w/ Py-
Torch”), and (2) rasterizing the environment Gaussian prim-
itives with a modified 3DGS [17] rasterizer using 1x1 tiles
(“w/ 1x1-tile rasterizer”). All three methods, including our
Gaussian tracer, apply the same volume rendering equation
as in Eq. 2. Quantitative results in Tab. 6 reveal that both
alternative strategies take over an hour to render a single
frame, whereas our Gaussian tracer achieves real-time ren-
dering speeds, leveraging hardware-accelerated ray tracing.

PSNR ↑ SSIM ↑ LPIPS ↓ FPS ↑
w/ PyTorch - - - 1/6157.613
w/ 1x1-tile rasterizer - - - 1/11902.431

w/ 50% weight filting 27.137 0.824 0.192 36.216
w/ 75% weight filting 27.104 0.823 0.192 41.824
w/ 80% weight filting 27.033 0.822 0.193 44.215
w/ 90% weight filting 26.695 0.816 0.197 47.149
Ours 27.220 0.838 0.177 32.259

Table 6. Runtime analysis of the proposed method on the
hatchback of NeRF-Casting Shiny Scenes [38]. Rasterization
or PyTorch-based ray tracing is impractical for rendering the envi-
ronment Gaussian primitives. The acceleration techniques lead to
minimal quality changes as shown by the cell.

Rendering speed analysis. As mentioned in Sec. 4.1, the
rendering of our method consists of two main rounds: ras-
terization of the base Gaussian and ray tracing of the en-

2



3DGS GaussianShader 3DGS-DR Ours Ground Truth

Figure 9. Qualitative comparison on real scenes. Our method significantly improves rendering quality over previous approaches, partic-
ularly in producing more detailed reflections. Zoom in for more details.

vironment Gaussian, and the final color is the blending of
the two. Based on the fact that only a small portion of the
scene surface contains strong specular reflections, we can
further accelerate the rendering process by only tracing rays
with high blending weights, which are only made possible
by our tracing-based renderer. We ablate the effectiveness
and quality impact of this acceleration technique, results are
shown in Tab. 6.

B.3. Environment Gaussian Design
The Necessity of using a separate environment Gaussian
primitives. To evaluate the decision to use separate Gaus-
sian primitives for reflection modeling, we perform an ex-
periment using a single set of Gaussian primitives for both
reflection and base scene modeling. We first trace a camera
ray to obtain the base color, normal and rendering weight,

then trace a secondary ray to render the reflection color, ul-
timately combining these results using Eq. (5) to get the
final color. However, we found that the experiment con-
sistently failed to converge due to unavoidable interference
between suboptimal geometry during optimization and in-
correctly hitting Gaussian primitives from erroneous reflec-
tion directions, leading to an unstable training process.

C. Details of Environment Gaussian

We provide more details of our base Gaussian and environ-
ment Gaussian. The SH coefficients of both base Gaussian
and environment Gaussian are set to two for the best re-
sults. The environment Gaussian is jointly optimized with
the base Gaussian, and environment Gaussian constitutes
around 15% of the base Gaussian, of average 300k Gaus-

3



3DGS GaussianShader 3DGS-DR Ours Ground	Truth

ba
ll

ca
r

he
lm
et

to
as
te
r

Figure 10. Qualitative comparison on synthetic scenes. Despite being designed for robustness on real-world data, our method effectively
reconstructs accurate distant specular reflections and effectively captures near-field reflections caused by self-occlusions.

sian primitives using 70MB after training. For pruning, we
follow the pruning method in the original 2DGS [13] and
keep at most the top 630k environment Gaussian primitives
based on rendering weights.

D. Details of Gradient Computation

To enable the joint optimization of base Gaussian and en-
vironment Gaussian primitives, which is essential for ac-
curate geometry recovery and reflection reconstruction (as
demonstrated in Sec. 5.4), our Gaussian tracer must be fully
differentiable. This requires computing gradients with re-
spect to the input reflected ray origin, dL

do , and direction,
dL
dd . These gradients are backpropagated through the sur-
face position x and normal n, obtained during the first ras-
terization stage, to the base Gaussian parameters for joint

optimization.
Consider an input ray with origin o and direction d, and

a intersected triangle primitive i with vertices v1,v2,v3.
During ray traversal, the OptiX kernel utilizes the GPU’s
RT core to determine the intersection depth ti, which is then
used to compute the interaction position as xi = o + tid.
This position is subsequently transformed into the local tan-
gent plane of the corresponding 2D Gaussian, yielding ui

via Eq. 6 for Gaussian value evaluation. Note that the ray-
triangle intersection depth can be manually computed as:

ti =
n⊤
i (v1 − o)

n⊤
i d

, (12)

where ni = (v2−v1)×(v3−v1) is the normal direction of
the triangle. Then, we can apply the chain rule to calculate

4



2DGS GaussianShader 3DGS-DR Ours Ground	Truth

ba
ll

ca
r

co
ffe
e

to
as
te
r

Figure 11. Qualitative comparisons of normal produced by different methods.

the derivatives w.r.t. the ray origin and direction:

dL
do

=
dL
dxi

dxi

do
+

dL
dt

dt

do

=
dL
dxi

+
dL
dt

· −ni

n⊤
i d

,
(13)

and
dL
dd

=
dL
dxi

dt

dd
+

dL
dt

dt

dd

=
dL
dxi

· ti +
dL
dt

· −n⊤
i (v1 − o)

ni · (n⊤
i d)

2
.

(14)

This gradient flow enables the joint optimization of the
reflection appearance of environment Gaussian alongside
the geometry and base appearance of base Gaussian, en-
hancing both geometry accuracy and reflection fidelity.

5



PSNR ↑ Methods
Ref-Real [37] NeRF-Casting Shiny Scenes [38]

sedan toycar spheres compact grinder hatchback toaster

Non real-time

Ref-NeRF* [37] 25.390 22.750 21.120 30.550 33.910 25.210 32.660
UniSDF [39] 24.680 24.150 22.270 29.720 33.720 27.010 32.900
ZipNeRF [4] 25.850 23.410 21.770 31.100 34.670 27.780 33.410
NeRF-Casting [38] 26.770 24.200 23.040 29.730 34.000 27.490 32.870

Real-time

3DGS [17] 25.240 23.910 21.950 28.945 30.885 26.201 29.410
2DGS [13] 25.065 24.282 22.064 28.415 30.164 25.893 28.630
GaussianShader [14] 24.081 23.137 21.408 27.474 26.572 24.959 26.641
3DGS-DR [51] 25.445 23.582 21.539 28.692 30.129 25.985 29.141
Ours 26.156 24.746 22.949 29.608 33.331 27.220 31.618

SSIM ↑ Methods
Ref-Real [37] NeRF-Casting Shiny Scenes [38]

sedan toycar spheres compact grinder hatchback toaster

Non real-time

Ref-NeRF* [37] 0.721 0.612 0.542 0.907 0.880 0.842 0.932
UniSDF [39] 0.700 0.639 0.567 0.895 0.879 0.845 0.937
ZipNeRF [4] 0.733 0.626 0.545 0.913 0.887 0.870 0.944
NeRF-Casting [38] 0.739 0.641 0.597 0.884 0.882 0.853 0.938

Real-time

3DGS [17] 0.713 0.636 0.573 0.877 0.864 0.838 0.928
2DGS [13] 0.704 0.662 0.595 0.857 0.854 0.819 0.917
GaussianShader [14] 0.668 0.625 0.573 0.851 0.799 0.805 0.884
3DGS-DR [51] 0.714 0.635 0.571 0.857 0.849 0.813 0.914
Ours 0.727 0.667 0.619 0.871 0.895 0.838 0.938

LPIPS ↓ Methods
Ref-Real [37] NeRF-Casting Shiny Scenes [38]

sedan toycar spheres compact grinder hatchback toaster

Non real-time

Ref-NeRF* [37] 0.270 0.257 0.257 0.105 0.123 0.156 0.111
UniSDF [39] 0.309 0.245 0.243 0.122 0.132 0.160 0.107
ZipNeRF [4] 0.260 0.243 0.238 0.096 0.111 0.130 0.082
NeRF-Casting [38] 0.254 0.246 0.238 0.148 0.114 0.155 0.096

Real-time

3DGS [17] 0.301 0.237 0.248 0.154 0.181 0.179 0.123
2DGS [13] 0.344 0.246 0.254 0.193 0.217 0.215 0.147
GaussianShader [14] 0.371 0.293 0.278 0.189 0.289 0.217 0.169
3DGS-DR [51] 0.322 0.249 0.251 0.196 0.219 0.228 0.146
Ours 0.287 0.208 0.229 0.159 0.151 0.177 0.110

Table 7. Ref-Real [37] and NeRF-Casting [38] per-scene breakdowns. All metrics are evaluated at the original resolution downsample
by a factor of 4 as prior works [38].

6



PSNR ↑ Methods
Shiny Blender Scenes [37]

ball car coffee helmet teapot toaster

Non real-time
Ref-NeRF [37] 47.460 30.820 34.210 29.680 47.900 25.700
UniSDF [39] 44.100 29.860 33.170 38.840 48.760 26.180
NeRF-Casting [38] 45.460 30.450 33.180 39.100 49.980 26.190

Real-time

3DGS [17] 27.650 27.260 32.300 28.220 45.710 20.990
2DGS [13] 25.990 26.730 32.360 27.300 44.940 20.272
GaussianShader [14] 29.081 26.940 31.147 28.883 43.379 23.584
3DGS-DR [51] 33.533 30.236 34.580 31.518 47.038 26.823
3iGS [36] 27.640 27.510 32.580 28.210 46.040 22.690
Ours 32.567 30.598 34.312 31.470 46.582 27.427

SSIM ↑ Methods
Shiny Blender Scenes [37]

ball car coffee helmet teapot toaster

Non real-time
Ref-NeRF [37] 0.995 0.955 0.974 0.958 0.998 0.922
UniSDF [39] 0.993 0.954 0.973 0.990 0.998 0.945
NeRF-Casting [38] 0.994 0.964 0.973 0.988 0.999 0.950

Real-time

3DGS [17] 0.937 0.931 0.972 0.951 0.996 0.894
2DGS [13] 0.935 0.932 0.973 0.952 0.997 0.892
GaussianShader [14] 0.955 0.930 0.969 0.955 0.996 0.907
3DGS-DR [51] 0.979 0.957 0.976 0.971 0.997 0.943
3iGS [36] 0.938 0.930 0.973 0.951 0.997 0.908
Ours 0.971 0.958 0.974 0.968 0.997 0.945

LPIPS ↓ Methods
Shiny Blender Scenes [37]

ball car coffee helmet teapot toaster

Non real-time
Ref-NeRF [37] 0.059 0.041 0.078 0.075 0.004 0.095
UniSDF [39] 0.039 0.047 0.078 0.021 0.004 0.072
NeRF-Casting [38] 0.044 0.033 0.074 0.018 0.002 0.073

Real-time

3DGS [17] 0.162 0.047 0.079 0.081 0.008 0.125
2DGS [13] 0.155 0.051 0.080 0.080 0.008 0.126
GaussianShader [14] 0.145 0.066 0.085 0.086 0.011 0.105
3DGS-DR [51] 0.104 0.038 0.076 0.050 0.006 0.082
3iGS [36] 0.156 0.045 0.076 0.073 0.006 0.099
Ours 0.138 0.037 0.085 0.052 0.006 0.077

Table 8. Quantitative results on Shiny Blender Scenes [37].

7



PSNR ↑ Methods
Mip-NeRF 360 [3]

bicycle bonsai counter flowers garden kitchen room stump treehill

Non real-time

Ref-NeRF* [37] 24.910 32.290 26.020 21.630 27.450 31.610 31.680 25.910 21.790
UniSDF [39] 24.670 32.860 29.260 21.830 27.460 31.730 31.250 26.390 23.510
ZipNeRF [4] 25.800 34.460 29.380 22.400 28.200 32.500 32.650 27.550 23.890
NeRF-Casting [38] 24.920 33.810 28.840 21.750 27.310 32.260 31.660 25.640 23.220

Real-time

3DGS [17] 25.250 31.980 28.700 21.520 27.410 30.320 30.630 26.550 22.490
2DGS [13] 24.741 31.246 28.107 21.131 26.723 30.372 30.679 26.123 22.427
GaussianShader [14] 23.103 29.278 26.639 20.267 26.290 27.125 24.098 24.668 20.552
3DGS-DR [51] 24.869 31.232 27.730 21.116 27.142 28.999 30.068 25.473 21.344
Ours 25.209 31.946 29.017 21.551 27.709 31.660 31.020 25.423 22.686

SSIM ↑ Methods
Mip-NeRF 360 [3]

bicycle bonsai counter flowers garden kitchen room stump treehill

Non real-time

Ref-NeRF* [37] 0.723 0.935 0.875 0.592 0.845 0.922 0.914 0.731 0.634
UniSDF [39] 0.737 0.939 0.888 0.606 0.844 0.919 0.914 0.759 0.670
ZipNeRF [4] 0.769 0.949 0.902 0.642 0.860 0.928 0.925 0.800 0.681
NeRF-Casting [38] 0.747 0.945 0.887 0.605 0.836 0.924 0.911 0.749 0.653

Real-time

3DGS [17] 0.771 0.938 0.905 0.605 0.868 0.922 0.914 0.775 0.638
2DGS [13] 0.734 0.931 0.893 0.575 0.844 0.917 0.907 0.756 0.618
GaussianShader [14] 0.700 0.917 0.875 0.541 0.842 0.888 0.839 0.701 0.579
3DGS-DR [51] 0.740 0.933 0.889 0.578 0.852 0.908 0.904 0.750 0.607
Ours 0.734 0.933 0.899 0.589 0.854 0.923 0.910 0.726 0.621

LPIPS ↓ Methods
Mip-NeRF 360 [3]

bicycle bonsai counter flowers garden kitchen room stump treehill

Non real-time

Ref-NeRF* [37] 0.256 0.182 0.213 0.317 0.132 0.121 0.206 0.261 0.294
UniSDF [39] 0.243 0.184 0.206 0.320 0.136 0.124 0.206 0.242 0.265
ZipNeRF [4] 0.208 0.173 0.185 0.273 0.118 0.116 0.196 0.193 0.242
NeRF-Casting [38] 0.231 0.176 0.203 0.312 0.142 0.118 0.216 0.244 0.273

Real-time

3DGS [17] 0.205 0.205 0.204 0.336 0.103 0.129 0.220 0.210 0.317
2DGS [13] 0.267 0.227 0.229 0.374 0.145 0.146 0.243 0.258 0.374
GaussianShader [14] 0.275 0.242 0.243 0.380 0.131 0.170 0.307 0.277 0.394
3DGS-DR [51] 0.254 0.230 0.231 0.368 0.135 0.151 0.247 0.248 0.375
Ours 0.233 0.180 0.194 0.339 0.112 0.120 0.207 0.262 0.347

Table 9. Quantitative results on Mip-NeRF 360 [3]. The results in “Non Real-time” are borrowed from NeRF-Casting [38], and Ref-
NeRF* is an improved version of Ref-NeRF [37] that uses Zip-NeRF’s [4] geometry model.

8


	Introduction
	Related Work
	Preliminary
	Method
	Reflective Scenes Modeling
	Differentiable Ray Tracing
	Optimization

	Experiments
	Implementation Details
	Datasets and Evaluation Metrics
	Baseline Comparisons
	Ablation Studies

	Conclusion and Discussion
	Additional Results
	Comparison on Reflective Regions
	Comparison on Real-World Shiny Scenes
	Comparison on Shiny Blender verbin2022refnerf
	Comparison on Mip-NeRF 360 barron2022mipnerf360
	Additional Baselines

	Additional Ablation Studies
	Environment Representation Comparison
	Speed Analysis
	Environment Gaussian Design

	Details of Environment Gaussian
	Details of Gradient Computation



