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1. Overview of Supplementary Materials

In the appendix, we first provide additional architectural de-

tails in Section 2. Next, we present further experimental

settings in Section 3. We also include more information

about the proposed Mamba-Adaptor in Section 4. Finally,

we present additional experiments on semantic segmenta-

tion in Section 5.

2. Detailed Architecture

In Figure 1, we present a comprehensive illustration of

the model architectures related to our proposed Mamba-

Adaptor. This figure highlights not just the overall archi-

tecture but also the individual components constituting the

Mamba-Adaptor Block. The subfigure provides a detailed

view of the specific features and functions of the Mamba-

Adaptor Block, promoting a clearer understanding of its de-

sign and role within the overall model architecture.

3. Experimental Settings

3.1. Training Settings on ImageNet1K Benchmark

The training configurations for ImageNet1K [11] utilized in

this study align closely with the approaches detailed in [7].

We establish a consistent input image resolution of 224 x

224 pixels for all model variants, which serves as our default

for the initial training phase. For different resolutions, such

as 384 x 384 pixels, we implement a fine-tuning method.

This involves taking models previously trained on the 224 x

224 resolution and adapting them for the larger input size,

rather than retraining from scratch. This approach, which is

supported by findings from [7], is particularly advantageous

as it reduces the overall GPU resources needed during train-

ing. By leveraging earlier training, we not only attain effi-

cient performance but also minimize computing expenses.

*Corresponding author.

3.2. Training Settings on COCO Benchmark
Our emphasis is on the popular object detection framework,

Cascade Mask R-CNN [1, 5], which has garnered signifi-

cant attention in scholarly discussions, especially regarding

Mask R-CNN and the work by Cai et al. (2018). Imple-

mentation of this framework is achieved through MMDetec-

tion [2], a readily available open-source toolbox for object

detection.

To optimize our model, we use the AdamW [9] opti-

mizer, which is well-known for its effectiveness in training

deep learning architectures. We start with an initial learn-

ing rate of 0.0001, a common starting point that allows for a

gradual optimization process. Our training process utilizes

a batch size of 16, which strikes a balance between memory

usage and training efficiency.

4. Detail of Mamba-Adaptor
4.1. Analysis of State Space Models.
To simplify calculations, the repeated application in SSM

can be effectively performed simultaneously using a global

convolution method.

y = x�K

with K = (CB,CAB, ...,CA
L−1

B),
(1)

where � denotes convolution operation, and K ∈ R
L is the

SSM kernel.

Exponential Decay. As shown in Equation 1, the output

sequence {y1, . . . , yN} can also be computed as the convo-

lution results of the input with the convolutional kernel [4]:

f = [CB,CAB,CA2B, . . . ,CAN−1B].

That is, from an initial condition x0, we have yi =
CAiBx0 +(f ∗ u)i +Dui, where (f ∗ u) denotes a linear

convolution between f and u. By setting the initial condi-

tion x0 to zero, y becomes a linear convolution of u, en-

hanced by a residual connection. In broader terms, every
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Figure 1. Detailed model architectures of the proposed Mamba-Adaptor. The detailed architecture of the Mamba-Adaptor Block is also

presented.

linear time-invariant system (including SSMs as a specific

example) can be expressed in convolution form.

4.2. Improvements from Adaptor.
Calculating convolutional weights requires cumulatively

multiplying an exponential matrix, represented as (mA).
This approach introduces an exponential decay effect on the

input mx. As the convolutional operation advances, the im-

pact of preceding input values diminishes swiftly due to this

decay. To mitigate the challenges posed by this exponen-

tial decay, we have developed an innovative solution called

Adaptor-S. Adaptor-S effectively addresses the decay issue

by focusing on aggregating the input data x from various lo-

cations within the input space rather than solely relying on

the decayed values. This approach allows for retaining more

meaningful information from the input, enhancing the over-

all effectiveness of the convolutional operation. By directly

gathering data from multiple locations, Adaptor-S ensures

that the model can utilize a broader range of information,

leading to more accurate and robust outputs.

Sequential Format. Given a 1D input sequence u ∈ R
N of

length N , we denote the 1D output sequence y ∈ R
N of an

SSM parameterized by matrices A,B,C,D as

y = SSMA,B,C,D(u).

To simplify notation, we omit the reference to A,B,C,D
and write y = SSM(x) if they are clear from context. The

input signal x is transformed into a 1D sequence, a method

that frequently neglects the spatial structural details in im-

age data. This conversion may result in the loss of vital

contextual information, which is necessary for effective im-

age analysis. To mitigate this issue, we employ convolu-

tional filters, which take advantage of the 2D visual induc-

tive bias. These filters operate by conducting spatial aggre-

gation within a specified local window. By concentrating on

small sections of the image, convolutional filters can iden-

tify local patterns and features, maintaining the spatial rela-

tionships that are crucial for interpreting visual data. This

method enables us to keep more of the spatial details while

processing the information efficiently.

5. Additional Experiments

We conduct additional experiments in semantic segmenta-

tion on the ADE20K [15] dataset. ADE20K is a renowned

semantic segmentation dataset comprising 150 diverse se-

mantic categories. It includes 25,000 images in total:

20,000 for training, 2,000 designated for validation, and

3,000 reserved for testing. For our implementation, we use

UperNet [13] within the mmsegmentation framework [3].

To align with the baseline model, we use a training setup

similar to previous works [6]. During the inference phase,

a multi-scale evaluation is conducted using resolutions that

vary from 0.5 to 1.75 times the resolution used for train-

ing. The test scores encompass both training and validation

images, which is standard practice [14].

In Table 1, we present the performance results of

our Mamba-Adaptor variants, specifically b1 and b2.

These variants have demonstrated outstanding performance,

achieving state-of-the-art results in comparison to ex-

isting models. They enhance the capabilities of the



Backbone Params(M) FLOPs(G) mIoU-SS(%) mIoU-MS(%)

EffVMamba-S [10] 29M 505G 41.5 42.1

MSVMamba-M [12] 42M 875G 45.1 45.4

Mamba-Adaptor-b1 38M 708G 45.4 46.0

Swin-T [7] 60M 945G 44.4 45.8

ConvNeXt-T [8] 60M 939G 46.0 46.7

VMamba-T [6] 55M 964G 47.3 48.3

EffVMamba-B [10] 65M 930G 46.5 47.3

MSVMamba-T [12] 65M 942G 47.6 48.5

Mamba-Adaptor-b2 58M 971G 47.8 48.6

Table 1. Additional experiments on the semantic segmentation in ADE20K [15] benchmark. SS and MS denote single-scale and multi-

scale inference settings.

baseline model, VMamba [6], with minimal additional

costs in model complexity and resources. This enhance-

ment demonstrates the efficiency and effectiveness of the

Mamba-Adaptor, making it an attractive option for re-

searchers and practitioners in the field.
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