
Model Poisoning Attacks to Federated Learning via Multi-Round Consistency

Supplementary Material

A. Motivation

We first introduce our key observation about why existing
model poisoning attacks achieve suboptimal attack effec-
tiveness, which motivates the design of our PoisonedFL
in the next section. We show experimental results on
the MNIST dataset with the default parameter settings de-
scribed in Section 5.1. We assume the server uses Trimmed
Mean [39] as the aggregation rule. Moreover, we assume
the ratio of fake clients to genuine clients is 20%. We con-
sider MPAF [13], an attack not requiring genuine clients’
information, and Fang [17], a representative attack that re-
quires genuine clients’ information. To give advantages to
Fang, we assume the attacker knows the local models of all

participating genuine clients in each training round when
crafting malicious model updates on fake clients.

In each training round, these attacks craft a malicious
model update for each fake client selected by the server
to participate in training. A malicious model update gt

i of
fake client i in training round t can be decomposed into a
dimension-wise product of a sign vector sti and a magnitude

vector |gt
i |, where | · | means dimension-wise absolute value

of a vector. Each dimension of sti is either +1 or -1, while all
dimensions of |gt

i | are non-negative. A dimension with a +1
(or -1) sign aims to increase (or decrease) the corresponding
dimension/parameter of the global model. For a fake client,
we say a dimension is flipped in training round t if its sign
in the malicious model update is flipped, compared to that
in the previous training round. A flipped dimension in a
training round t may cancel the attack effect of the previous
training round t � 1. This is because the malicious model
updates aim to increase the dimension of the global model
in one training round but decrease it in the other. For each
training round t, we define flipping rate as the fraction of
flipped dimensions of a malicious model update averaged
over the fake clients.

Fig. 1a shows the testing error rate of the global model as
a function of training round when no attack, MPAF, or Fang
is used; while Fig. 1b shows the flipping rate as a function
of training round when MPAF or Fang is used to craft ma-
licious model updates on the fake clients. We observe that
the flipping rate of MPAF is always larger than 35% and that
of Fang is larger than 40% in the last around 1,500 training
rounds, leading to self-cancellation of attack effect in many
training rounds. For instance, in Fang attack, the flipping
rate is around 10% in nearly the first 1,000 training rounds,
i.e., the malicious model updates maintain some degree of
“consistency”. As a result, the global model under Fang at-
tack has a large testing error rate in those training rounds

Figure 6. The testing error rate of a global model as a function of
the magnitude (measured by `2 norm) of the noise added to it along
a random update direction. We assume the initial global model is
accurate and trained under no attack. The dataset is Purchase and
FL defense is Median.

Table 2. Model architecture for MNIST and FashionMNIST.

Layer Type Size

Convolution + ReLU 3x3x30

Max Pooling 2x2

Convolution + ReLU 3x3x50

Max Pooling 2x2

Fully Connected + ReLU 100

Softmax 10

Table 3. Model architecture for CIFAR-10.

Layer Type Size

Convolution + ReLU 3x3x32

Max Pooling 2x2

Convolution + ReLU 3x3x64

Max Pooling 2x2

Fully Connected + ReLU 512

Softmax 10

as shown in Fig. 1a. However, the flipping rate rapidly in-
creases as the training proceeds, eventually leading to self-
cancellation of attack effect and an accurate global model.

B. Additional Details of Experimental Setup

B.1. Datasets

We use the following five datasets from different domains.
MNIST [24]: MNIST is a 10-class handwritten digits clas-

11

Table 4. Model architecture for FEMNIST.

Layer Type Size

Convolution + ReLU 3x3x30

Max Pooling 2x2

Convolution + ReLU 3x3x50

Max Pooling 2x2

Fully Connected + ReLU 200

Softmax 62

sification dataset. It comprises 60,000 training examples
and 10,000 testing examples. In FL, the training data is
typically not independently and identically distributed (non-
IID) among clients. Following [13, 17], we distribute the
training examples among clients based on a non-IID degree
of q = 0.5 by default. We train a convolutional neural net-
work (CNN) for MNIST dataset. The architecture of CNN
is shown in Table 2 in Appendix.
FashionMNIST [35]: FashionMNIST is a benchmark
dataset of Zalando’s article images, which contains 60,000
training examples and 10,000 testing examples. For Fash-
ionMNIST, the degree of non-IID is also set to q = 0.5 by
default. We use the same CNN architecture for FashionM-
NIST dataset as employed in MNIST dataset.
Purchase [7]: Purchase is a 100-class customer purchase
style prediction dataset. Each input consists of 600 binary
features. Following [13], we split the total 197,324 exam-
ples into 180,000 training examples and 17,324 testing ex-
amples. Following [13], we evenly distribute the training
examples to clients and train a fully connected neural net-
work.
CIFAR-10 [23]: CIFAR-10 is 10-class color image classi-
fication dataset. It comprises 50,000 training examples and
10,000 testing examples. To consider a different degree of
non-IID, we set q = 0.2 for CIFAR-10 dataset. We train
a CNN for CIFAR-10, whose architecture is shown in Ta-
ble 3.
FEMNIST [12]: FEMNIST is a 62-class classification
dataset. The dataset is already distributed among 3,550
clients with a total of 805,263 examples. We randomly sam-
ple 1,200 clients. We train a CNN for FEMNIST, whose
architecture is shown in Table 4.

B.2. Defenses

We evaluate eight state-of-the-art defenses, including six
Byzantine-robust aggregation rules (Multi-Krum [11], Me-
dian [39], Trimmed Mean [39], Norm Bound [34],
FLTrust [14], and FLAME [28]), one provably robust de-
fense (FLCert [16]) and one malicious clients detection
method (FLDetector [40]). We also consider the non-robust
FedAvg [26] as a baseline.

Multi-Krum [11]: Multi-Krum uses an iterative method
to select a subset of clients’ model updates. In each step,
it selects the model update that has the smallest sum of
Euclidean distance to its n � 2 neighbors, where n is the
number of genuine clients. This selection process continues
until n clients are chosen. Finally, the server computes the
average of the n selected model updates as the aggregated
model update.
Median [39]: In Median aggregation rule, the server com-
putes the coordinate-wise median of the clients’ model up-
dates as the aggregated model update.
Trimmed Mean (TrMean) [39]: For each dimension, the
server first removes the largest m values and smallest m
values, and then computes the average of the remaining n�
m values, where m is the number of fake clients.
Norm Bound [34]: In Norm Bound aggregation rule, the
server first clips each client’s model update to have a prede-
termined norm and then computes the average of the clipped
model updates as the aggregated model update. We follow
prior work [33] to set the predetermined norm as the av-
erage norm of the genuine model updates in each training
round.
FLTrust [14]: FLTrust assumes that the server has a small,
clean dataset to bootstrap trust. We assume the server’s
dataset includes training examples selected uniformly at
random. The size of the server’s dataset is 100 for MNIST,
FashionMNIST, and CIFAR-10, and 200 for Purchase and
FEMNIST.
FLAME [28]: In each training round, FLAME consid-
ers the cosine similarity between clients’ local models (i.e.,
a client’s model update + current global model) to divide
clients into clusters and filter out the clusters containing po-
tentially malicious model updates.
FLCert [16]: FLCert divides clients into multiple groups
and trains a global model for each group using any existing
FL algorithm (we use Median [39]). Given a testing input,
FLCert predicts its label based on the majority vote among
these global models. We divide the clients into 10 disjoint
groups uniformly at random in our experiments.
FLDetector [40]: FLDetector aims to detect malicious
clients during training. We first apply FLDetector with the
full participation of clients for detection for 300 communi-
cation rounds. Following [40], if some clients are detected
as malicious, we remove them from the system. Then we
re-train a global model from scratch based on the remaining
clients using Median [39] aggregation rule with the default
setting.

B.3. Compared Attacks

We compare our PoisonedFL with seven attacks, including
five attacks (Fang [17], Opt. Fang [32], LIE [10], Min-
Max [32], and Min-Sum [32]) that require genuine clients’

12

information and two attacks (Random [13] and MPAF [13])
that do not require such information. Note that when apply-
ing the first category of attacks to craft the malicious model
updates on fake clients, we assume that the attacker has ac-
cess to the model updates of all genuine clients and the ag-
gregation rule used by the server. In Section D, we also
study the scenarios where an attacker uses the global mod-
els to reconstruct synthetic data on the fake clients and uses
the local models trained on them to perform attacks. We do
not make these assumptions for Random, MPAF, and our
PoisonedFL. Therefore, we give advantages to the first cat-
egory of attacks.

Fang [17]: In this attack, the attacker crafts malicious
model updates for fake clients such that the aggregated
model update after attack deviates substantially from the
before-attack one. Fang has different versions for different
aggregation rules. We apply their Krum attack for Multi-
Krum defense and TrMean attack for others.

Opt. Fang [32]: Following Fang, this attack also aims to
maximize the deviation between the after-attack aggregated
model update and before-attack one, but it uses a different
way to solve the malicious model update. Specifically, a
malicious model update is a variant of the average of all
genuine clients’ model updates.

A little is enough (LIE) [10]: In LIE attack, fake clients
craft their malicious model updates by adding a small
amount of noise to the average of genuine model updates.
Specifically, for each dimension j, LIE calculates the mean
µj and standard deviation �j among the genuine model up-
dates, and the dimension j of the malicious model update is
set as µj + 0.74 · �j .

Min-Max [32]: In this attack, a fake client crafts its ma-
licious model update such that its distance to any genuine
model update is no larger than the maximum distance be-
tween any two genuine model updates.

Min-Sum [32]: Each fake client crafts its malicious model
update such that the sum of the distances between the ma-
licious model update and all genuine model updates is not
larger than the sum of distances between any genuine model
update and other genuine model updates.

Random [13]: In this attack, each fake client i 2 [n+1, n+
m] sends a scaled random vector gt

i = � · ✏ to the server,
where ✏ ⇠ N (0, I) and � is a scaling factor. Following
prior work [13], we set � = 1e6 in our experiments.

MPAF [13]: In MPAF attack, during training round t, fake
client i 2 [n+ 1, n+m] crafts its malicious model update
as gt

i = � · (w0 � wt�1), where w0 is an attacker-chosen
random model, wt�1 is the global model in the previous
training round t � 1, and � is a scaling factor. Following
prior work [13], we set � = 1e6 in our experiments.

B.4. FL Settings

We primarily establish the FL setting in a cross-device sce-
nario, which is more feasible for model poisoning attacks,
as discussed in Section D. Therefore, we assume 1, 200 gen-
uine clients and 20% fake clients. The learning rates for the
five datasets are selected within the range of 0.01 to 0.1
for optimal training effectiveness. Specifically, the learn-
ing rates for MNIST, FashionMNIST, and FEMNIST are
set to 0.01, while CIFAR-10 is set to 0.03, and Purchase
is set to 0.1. The number of training rounds is configured
to ensure full convergence under various scenarios: 6, 000
for MNIST, FashionMNIST, and FEMNIST, and 10, 000 for
CIFAR-10 and FEMNIST. The batch size is set to 32 for
MNIST, FashionMNIST, CIFAR-10, and FEMNIST, and to
128 for Purchase, based on the number of local data sam-
ples.

C. Additional Experimental Results

C.1. Analyzing the Effectiveness of PoisonedFL

Why PoisonedFL breaks FL defenses: State-of-the-art
defenses leverage filtering and clipping to reduce the impact
of malicious model updates. They can weaken the attack
effect in individual training rounds. However, since Poi-
sonedFL crafts malicious model updates that are consistent
across training rounds and avoid being entirely filtered out
by dynamically adjusting attack magnitudes, its cumulative
attack effect still substantially moves the global model to-
wards the designated random update direction s, leading to
a large testing error rate. For instance, Fig. 7 in Appendix
shows that a large fraction of the dimensions of the total
aggregated model updates have signs matching with s and
Fig. 8 in Appendix shows that the magnitude of the total
aggregated model updates becomes very large, after our at-
tack effect accumulates over multiple training rounds, for
all defenses.

Specifically, for Median and TrMean, even though the
malicious model updates are not necessarily selected, their
consistent nature over multiple training rounds biases the
aggregation of each dimension towards the designated ran-
dom update direction. For Norm Bound, even if our attack
effect is weakened in each training round, its cumulative ef-
fect over multiple training rounds remains pronounced with
a significant magnitude for the total aggregated model up-
date. For filtering-involved defenses based on Euclidean
distance or cosine similarity, such as Multi-Krum, FLTrust,
and FLAME, PoisonedFL maintains effectiveness because
the malicious model updates are not entirely filtered out
in many training rounds due to dynamic magnitude adjust-
ment. For instance, Table 5 in Appendix shows that a large
fraction of or all malicious model updates are not filtered
out by FLAME and Multi-Krum, while Table 6 shows simi-
lar results for FLTrust. FLCert is vulnerable to PoisonedFL

13

Figure 7. Fraction of dimensions of the aggregated model update
whose signs match with the sign vector s as a function of training
round under PoisonedFL. The dataset is Purchase.

Table 5. The fraction (mean ± standard deviation, %) of mali-
cious model updates in PoisonedFL that are not filtered out by
FLAME and Multi-Krum (i.e., false negative rate) across rounds.
The dataset is Purchase.

Multi-Krum FLAME

False Negative Rate 32.38±2.04 44.25±8.18

since the global models for ensembling are learnt by exist-
ing aggregation rules, which are vulnerable to PoisonedFL.
The detection mechanism FLDetector relies on inconsistent
model updates of malicious clients. Since the malicious
model updates are consistent in PoisonedFL, FLDetector
falsely classifies all malicious clients as benign across all
datasets.

Why PoisonedFL outperforms existing attacks: Poi-
sonedFL outperforms existing attacks because their crafted
malicious model updates are inconsistent across training
rounds, leading to self-cancellation of attack effect. In con-
trast, PoisonedFL enforces the malicious model updates to
be consistent (i.e., have the same sign vector) across training
rounds, making the aggregated model updates add up in the
global model across training rounds. As a result, the final
learnt global model has a very large magnitude, leading to
a large testing error rate. For instance, Fig. 8 in Appendix
shows the magnitude (measured by `2 norm) of the total
aggregated model updates as a function of training round
for different attacks on the Purchase dataset. Our results
show that the total aggregated model updates under exist-
ing attacks have small magnitudes while those under our
PoisonedFL attack have much larger magnitudes, which is
caused by the inconsistent malicious model updates in ex-
isting attacks vs. consistent malicious model updates in our
attack.

Table 6. The normalized trust score (mean ± standard devia-
tion) of the malicious/benign model updates in FLTrust against
PoisonedFL across rounds. The positive normalized trust scores
indicate that the malicious model updates are not entirely filtered
out. The dataset is Purchase.

Malicious Benign

Normalized Trust Score 0.008±0.010 0.007±0.002

C.2. Impact of the Participation Rate

In each training round, the server typically selects a frac-
tion (called participation rate) of the clients to participate
in training. We use participation rate of 0.1 by default in
our experiments. Fig. 9 shows the testing error rates un-
der different defenses and attacks when the participation
rate ranges from 0.01 to 1, where FashionMNIST dataset
is used. Note that for these experiments, we use FashionM-
NIST instead of CIFAR-10 dataset, due to limited memory
of our GPU server. Moreover, we do not have results for
Multi-Krum in Fig. 9 when the participation rate is 1 due
to the same reason on insufficient memory. For FLCert, the
smallest participation rate is set to 0.03 instead of 0.01, be-
cause FLCert divides the clients into 10 groups, and if a
participation rate of 0.01 is used, only one client is selected
to participate in each training round. Consequently, attacks
requiring genuine local models are not applicable. We ob-
serve that participation rate almost has no impact on the ef-
fectiveness of both existing attacks and our attack. More-
over, our attack consistently outperforms existing attacks
across all considered participation rates.

C.3. Impact of Different PoisonedFL Variants

PoisonedFL crafts a malicious model update in each train-
ing round as a product of a given sign vector and a dynam-
ically set magnitude vector, which is further decomposed
into a product of an unit magnitude vector and a scaling fac-
tor. The unit magnitude vector and scaling factor play im-
portant roles in a malicious model update. Thus, we study
different variants for designing them. We show results on
CIFAR-10 dataset for simplicity.
Variants of the unit magnitude vector: For the unit mag-
nitude vector, we consider the following two variants.
• Same magnitude: In this variant, the attacker sets each

dimension of the unit magnitude vector vt to the same
value. In other words, we set each dimension to be 1p

d
,

where d is the number of dimensions/parameters.
• Adaptive magnitude: In this variant, the dimensions

of the unit magnitude vector have different magnitudes
and are dynamically set in each training round based
on how the global model changes and the malicious
model updates in the previous training round. Equation 6
shows our adaptive unit magnitude vector adopted by Poi-

14

(a) Multi-Krum (b) Median (c) TrMean (d) Norm Bound (e) FLTrust (f) FLAME

Figure 8. `2 norm of the total aggregated model updates
���
Pt

t0=1 g
t0
��� (i.e.,

��wt �w0
��) as a function of training round t for different

attacks on the Purchase dataset.

(a) Multi-Krum (b) Median (c) TrMean (d) Norm Bound (e) FLTrust (f) FLAME (g) FLCert (h) FLDetector

Figure 9. Testing error rate of the global model as a function of the participation rate under different defenses and attacks.

(a) (b)

Figure 10. (a) Comparing the two variants of setting the unit mag-
nitude vector in PoisonedFL. (b) Comparing the two variants of
setting the scaling factor in PoisonedFL.

sonedFL.
Fig. 10a shows the testing error rates under different de-
fenses when PoisonedFL uses the two variants to set the
unit magnitude vector, where the scaling factor is set using
our adaptive method in Equation 7. Our results show that
adaptive magnitude substantially outperforms same mag-
nitude for some defenses (e.g., Multi-Krum and FLTrust)
while the two variants achieve comparable effectiveness for
other defenses. This is because adaptive magnitude can tar-
get specific dimensions with larger effectiveness.
Variants of the scaling factor: We also consider two vari-
ants of setting the scaling factor as follows:
• Maximized scaling factor: This variant sets a very large

scaling factor with a goal to maximize the magnitude of
the aggregated model update. We use 100, 000 in our ex-
periments.

• Adaptive scaling factor: This variant, adopted by Poi-
sonedFL, leverages how the global model changes in the

previous training round to set the scaling factor (i.e.,
Equation 7) to avoid that the malicious model updates are
filtered out by the server.
Fig. 10b illustrates the testing error rates under differ-

ent defenses when PoisonedFL uses the two variants of set-
ting the scaling factor, where adaptive magnitude is used
to set the unit magnitude vector. We observe that, under
some defenses (e.g., Median, TrMean, and Norm Bound),
the variant of maximized scaling factor achieves compa-
rable testing error rates with adaptive scaling factor. This
is because, for dimension-wise aggregation rules like Me-
dian and TrMean, although the malicious model updates
with very large magnitudes are filtered out, they still de-
viate the aggregated model update; and although Norm
Bound normalizes the norms of malicious model updates,
the normalized malicious model updates still maintain con-
sistency across training rounds. However, for other de-
fenses like Multi-Krum and FLDetector that filter out en-
tire model updates, adaptive scaling factor substantially out-
performs maximized scaling factor. This is because these
defenses filter out the entire malicious model updates with
very large magnitudes. In contrast, adaptive scaling fac-
tor leverages how the global model changes in the past to
achieve a balance between attack effectiveness and unde-
tectability. Since PoisonedFL aims to be defense-agnostic,
adaptive scaling factor is preferred.

C.4. Impact of the Sign Vector

We further analyze the impact of the random sign vectors.
We experiment with PoisonedFL on CIFAR-10 with 6 ran-
dom seeds (1-6) for various random sign vectors and de-

15

Table 7. Testing error rate of the global model under PoisonedFL
with various random sign vectors obtained from different random
seeds on CIFAR-10.

seed=1 seed=2 seed=3 seed=4 seed=5 seed=6

Norm Bound 90.00 90.00 89.95 90.00 88.94 90.00
FLTrust 90.00 88.15 89.09 90.00 90.00 90.00
FLAME 80.79 86.59 84.43 81.39 80.68 82.37

fenses including TrMean, FLTrust, and FLAME, as shown
in Table 7. The result aligns with our intuition that these
random sign vectors do not affect the attack performance
and PoisonedFL can successfully break the defenses with
these 6 different random sign vectors. The reason is that
in a continuous attack with the same random direction, the
model inevitably updates substantially in a random direc-
tion in an uncontrolled way, and therefore leads to signifi-
cantly degraded accuracy.

D. Discussion and Limitations

D.1. Countermeasures and Adaptive Attacks

We explore new defenses tailored to PoisonedFL. Specifi-
cally, we study a new defense that normalizes the total ag-
gregated model update since PoisonedFL aims to increase
its magnitude. We also explore new tailored defenses to de-
tect fake clients based on how PoisonedFL crafts the mali-
cious model updates. We show that the normalization-based
defense has limited effectiveness at mitigating PoisonedFL
and we can still adapt PoisonedFL to break the detection
based defenses.

In our tailored detection based defenses, the server ex-
tracts a feature for each client in each training round and
then divides the clients into two clusters via fitting a two-
component Gaussian Mixture Model (GMM) [29] for the
features. We detect a particular cluster (e.g., with the
smaller mean value) as fake clients. After detecting fake
clients, the server removes them and re-trains a global
model using the remaining clients. Note that if the dis-
tance between the mean values of the two clusters is smaller
than the intra-cluster standard deviations of both clusters,
no clients are detected as fake and the training continues
since the difference between the two clusters may simply
be caused by randomness.

We extract features for clients based on how PoisonedFL
crafts malicious model updates. Depending on which infor-
mation of the malicious model updates is used to extract
features, we consider two variants of GMM, i.e., GMM-

Magnitude and GMM-Sign, which extract features based on
the magnitudes and signs of the model updates, respectively.
Due to limited space, we discuss GMM-Magnitude in Ap-
pendix D.1.2.

D.1.1. GMM-Sign

Feature: GMM-Sign exploits the consistency of the ma-
licious model updates to detect fake clients. Specifically,
for a client i in training round t, we define the feature x

t
i

as the number of flipped dimensions of its model updates in
two consecutive training rounds averaged in the recent N
training rounds. Formally, we have:

x
t
i =

tX

t0=t�N+1

dX

j=1

I(sign(gt0

i [j]) 6= sign(gt0�1
i [j])), (8)

where d is the number of dimensions/parameters of a model
update; I is the indicator function that has a value of 1 if
sign(gt0

i [j]) 6= sign(gt0�1
i [j]) and 0 otherwise; and gt0

i [j] is
the j-th dimension of gt0

i . For PoisonedFL, we have x
t
i =

0 for all fake clients. After dividing the clients into two
clusters, the cluster with a smaller mean value is detected as
fake clients.
Adaptive attack: In response to the defense, we adapt Poi-
sonedFL. Specifically, we randomly flip ↵ (called flipping

rate) fraction of the signs in each fake client’s malicious
model update and adjust the magnitudes of the correspond-
ing dimensions to a small random value. Formally, we set
the d-th dimension of the sign vector sti and magnitude vec-
tor kt

i for fake client i in training round t as follows:

sti[j] =

(
�s[j] with probability ↵

s[j] with probability 1� ↵
,

kt
i [j] =

(
✏ if sti[j] = �s[j]
kt[j] otherwise

,

(9)

where j 2 [1, d], s is the sign vector picked randomly at
the beginning of an attack, kt is the magnitude vector for
training round t crafted by PoisonedFL, and ✏ is a small
value.
Experimental results: Fig. 11 shows the detection accu-
racy of GMM-Sign and the testing error rates as the flip-
ping rate ↵ varies when the server uses different aggrega-
tion rules, where the dataset is CIFAR-10 and ✏ = 1e�6.
We observe that GMM-Sign can accurately detect the fake
clients when ↵ is small. However, the detection accuracy
reduces to 0 and PoisonedFL-Adapt still makes the learnt
global models random guessing when ↵ is larger than a
threshold, e.g., 0.08.

D.1.2. GMM-Magnitude

Feature: PoisonedFL uses the same malicious model up-
date (i.e., gt

i = kt � s) on all fake clients in training
round t. Therefore, the server can extract features for the
clients based on the similarity between their model updates.
Specifically, for each client i in training round t, we propose

16

(a) Median (b) TrMean (c) Norm Bound

Figure 11. Detection accuracy of GMM-Sign and testing error rate of the global model under PoisonedFL-Adapt attack as the flipping rate
↵ varies when the server uses different aggregation rules.

(a) Median (b) TrMean (c) Norm Bound

Figure 12. Detection accuracy of GMM-Magnitude and testing error rate of the global model under PoisonedFL-Adapt attack as the noise
scaling factor � varies when the server uses different aggregation rules.

to calculate a feature x
t
i as the sum of the average square

distance between the client’s model update and its closest
m� 1 model updates in the recent N training rounds. For-
mally, we have:

x
t
i =

tX

t0=t�N+1

X

j2Nt0
i

���gt0
i � gt0

j

���
2

m� 1
, (10)

where Nt0
i is the set of m � 1 clients whose model updates

are the closest to that of client i in training round t
0 and m

is the number of fake clients. Note that we give advantages
to the defense by assuming that the number of fake clients
is known to the server. In a training round, the server di-
vides the clients into two clusters via GMM based on the
features. The cluster with a smaller mean value is detected
as fake clients. The mean value is exactly zero for Poi-
sonedFL since the malicious model updates are the same
for the fake clients in each training round.
Adaptive attack: In response to such a defense, we can
further adapt our PoisonedFL by introducing random noise
to the magnitude vector kt. Specifically, we can add a nor-
malized noise to the magnitude vector for each fake client i
as follows:

kt
i = kt + � · ||k

t||
||✏i||

· ✏i, (11)

where kt is the magnitude vector crafted by PoisonedFL,
kt
i is the magnitude vector for fake client i crafted by

PoisonedFL-Adapt, ✏i ⇠ N (0, I) is the random noise sam-
pled from the standard Gaussian distribution, ||kt||

||✏i|| normal-
izes the random noise to have the same magnitude as kt,
and � is a scaling factor for the random noise. The noise

makes the malicious model updates of the fake clients less
similar to each other and thus evade detection.

Experimental results: Fig. 12 shows the detection accu-
racy of GMM-Magnitude and the testing error rates of the
global models as the noise scaling factor � varies when the
server uses different aggregation rules, where the dataset
is CIFAR-10 and N = 20. We observe that when �

is small, i.e., a small amount of noise is added to each
malicious model update, GMM-Magnitude can accurately
detect the fake clients and thus our PoisonedFL-Adapt is
not effective. However, when � is larger than a threshold
(e.g., 1.2), GMM-Magnitude fails to detect the fake clients
and PoisonedFL-Adapt still makes the learnt global models
nearly random guessing (i.e., testing error rates are around
90%). This is because fake clients and genuine clients have
distinguishable features when � is small while their features
are indistinguishable when � is large. PoisonedFL-Adapt
still substantially increases the testing error rates when � is
large because the malicious model updates still have consis-
tent sign vectors.

D.1.3. Normalization-based Defense

PoisonedFL aims to increase the magnitude of the total ag-
gregated model update, i.e.,

��wT �w0
��. Therefore, one

tailored defense is to normalize the total aggregated model
update. Specifically, the server can normalize wT � w0

to have a predefined `2 norm b and add the normalized to-
tal aggregated model update to the initial global model w0

to get a new global model, i.e., wT w0 + b
wT�w0

kwT�w0k .
Fig. 13 shows the testing error rate of the final global model
under PoisonedFL as the predefined norm b varies. Our re-
sults show that the testing error rate can be decreased by this

17

Figure 13. The testing error rate of a global model as a function of
the predefined norm b used to rescale the total aggregated model
update. The dataset is Purchase and FL defense is Median.

defense but is still high. This is because the update direction
of the total aggregated model update is randomly picked by
the attacker, which normalization cannot change.

D.2. Using Synthetic Data

In our previous experiments, when applying attacks that re-
quire genuine clients’ local models to craft malicious model
updates on fake clients, we assume the attacker has access
to the local models on all genuine clients. This assumption
is strong and not realistic. Therefore, we also explore that
an attacker uses the global models to reconstruct synthetic
data, train local models using the synthetic data, and then
craft malicious model updates based on them.

Reconstructing training data from a model is known as
model inversion [20]. Previous work [30] shows that the
global-model trajectory in multiple training rounds (espe-
cially early ones) of FL can be used to reconstruct synthetic
data that is similar to the clients’ genuine local training
data. We follow the setting and generation strategy in [30],
which is the state-of-the-art reconstruction method in FL,
to generate synthetic data for MNIST and FashionMNIST.
We use MNIST and FashionMNIST because they are sim-
pler datasets and easier to reconstruct, giving advantages to
these attacks. Specifically, we assume no attacks in the first
40 training rounds and use the corresponding clean global
models to reconstruct synthetic data. Table 8 shows the test-
ing error rates of the classifiers trained on the synthetic data
and evaluated on the genuine testing datasets of MNIST and
FashionMNIST. The results show that the classifiers have
decent testing error rates and thus the synthetic data mimic
the genuine data well. These results are also consistent with
prior work [30].

We then use the synthetic data on the fake clients to
perform model poisoning attacks in the remaining train-
ing rounds. Since each genuine client has 50 local train-
ing examples, we sample 50 synthetic training examples for

Table 8. Testing error rate of a classifier trained on synthetic data
and evaluated on genuine testing data.

MNIST FashionMNIST

Testing error rate 9.94 24.74

Table 9. Testing error rates of attacks using synthetic data on fake
clients (i.e., “Syn. Data + ”) and local models of all genuine clients
(i.e., “Genuine + ”), as well as our PoisonedFL that does not re-
quire synthetic data nor genuine local models.

MNIST FashionMNIST

Median

Syn. Data + Fang 4.71 23.30
Genuine + Fang 8.43 27.82

Syn. Data + Min-Max 4.79 22.09
Genuine + Min-Max 8.52 23.30

PoisonedFL 86.49 87.75

TrMean

Syn. Data + Fang 5.46 25.48
Genuine + Fang 5.66 27.96

Syn. Data + Min-Max 5.43 19.77
Genuine + Min-Max 5.66 23.68

PoisonedFL 88.73 85.36

FLTrust

Syn. Data + Fang 3.72 19.50
Genuine + Fang 4.61 18.78

Syn. Data + Min-Max 3.68 16.53
Genuine + Min-Max 12.56 21.32

PoisonedFL 88.65 88.41

FLCert

Syn. Data + Fang 3.73 20.80
Genuine + Fang 4.61 18.78

Syn. Data + Min-Max 3.06 16.27
Genuine + Min-Max 4.57 19.28

PoisonedFL 88.06 71.92

each fake client. In each training round, the fake clients
selected to participate in training train local models using
their synthetic local training examples; and then we craft
malicious model updates based on the local models for ex-
isting attacks. Table 9 shows the testing error rates of the
final global models under different attacks and defenses.
We observe that an existing attack achieves higher testing
error rates when having access to local models on the gen-
uine clients in most cases, compared to using local models
trained on synthetic data. PoisonedFL does not require gen-
uine local models nor synthetic data but substantially out-
performs these attacks.

D.3. Cross-silo FL

PoisonedFL primarily targets cross-device FL [21], in
which the clients are end-user devices such as smartphones.
An attacker can inject fake clients into a cross-device FL
system due to the open nature of the system. In particu-
lar, any client including fake ones can participate in the FL
system. We acknowledge that it is harder to apply both Poi-
sonedFL and existing attacks to cross-silo FL. Specifically,
the clients are often a small number of verified institutions
such as banks and hospitals in cross-silo FL. These institu-

18

tions often go through certain verification processes before
jointly training a model using FL. As a result, it is harder for
an attacker to compromise genuine clients/institutions or in-
ject fake clients/institutions in such a cross-silo FL system,
making full-client control attacks like PoisonedFL—and all
model poisoning attacks—difficult to execute. We believe
it is an interesting future work to identify a realistic threat
model for cross-silo FL that takes into account the unique
challenges and constraints.

19

	Introduction
	Background and Related Work
	Federated Learning (FL)
	Poisoning Attacks to FL
	Defenses against Poisoning Attacks

	Threat Model
	PoisonedFL
	Overview
	Formulating an Optimization Problem
	Solving the Optimization Problem

	Evaluation
	Experimental Setup
	Datasets
	Evaluation Metric
	Defenses and Compared Attacks
	FL Settings

	Main Results
	Impact of FL Settings

	Discussion and Limitations
	Conclusion
	Motivation
	Additional Details of Experimental Setup
	Datasets
	Defenses
	Compared Attacks
	FL Settings

	Additional Experimental Results
	Analyzing the Effectiveness of PoisonedFL
	Impact of the Participation Rate
	Impact of Different PoisonedFL Variants
	Impact of the Sign Vector

	Discussion and Limitations
	Countermeasures and Adaptive Attacks
	GMM-Sign
	GMM-Magnitude
	Normalization-based Defense

	Using Synthetic Data
	Cross-silo FL

