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Supplementary Material

The supplementary material is organized as follows.
Sec. 7 provides implementation details of our proposed
methods including the concrete input prompt and target out-
put. Sec. 8 provides the model performance for each ego-
vehicle behavior separately. Sec. 9 gives additional visu-
alization of S4-Driver motion planning in diverse scenar-
ios. Finally, Sec. 10 conducts extra ablation studies on
WOMD-Planning-ADE benchmark to justify the design of
S4-Driver.

7. Implementation Details

WOMD-Planning-ADE benchmark. This benchmark
contains 487k scenarios for model training and 44k for val-
idation, which are divided from 103k sequences of 20s
length. Each scenario contains 1s history and 8s future.
We only consider the future 5s for the open-loop evalua-
tion of motion planning since motion planning in real task
is conducted in an iterative manner. At each time stamp,
the dataset provides multi-view images captured by 8 cam-
eras (namely front left, front, front right, side left, side right,
rear left, rear, rear right). The dataset is also equipped with
fine-grained labels for all the other agents and the roadgraph
although they are not used in our self-supervised motion
planning algorithm.

Ego-vehicle coordinate system. We conduct the motion
planning task in the ego-vehicle coordinate system. At cur-
rent timestamp, the ego-vehicle position is defined as the
origin. The x−axis is oriented towards the current head-
ing angle of the ego-vehicle. The y−axis is oriented to-
wards the left of the ego-vehicle. The z−axis is oriented
upwards. Although it is a 3D coordinate system, we only
consider the xy−plane for the description of the positions,
velocities, and accelerations of the vehicles in the motion
planning task.

Architecture and hyperparameters. Unless otherwise
specified, we build up the S4-Driver framework based on
multimodal large-language model PaLI3-5B [10]. The 3D
scene representation (Sec. 3.3) in default covers the range
of (−30m, 80m)×(−30m, 30m)×(−2m, 8m) in the ego-
vehicle coordinate along x, y, z axes separately. The posi-
tion embedding in Eq. 3 and Eq. 7 are implemented with
a two-layer MLP attached to the Fourier embedding of
(x, y, z). To generate the gate values, we reduce the di-
mension of visual features from C = 1536 to C ′ = 96

in Eq. 5. The volume resolution is 1m × 1m × 2m. For
each scene, we select M = 6000 sparse volumes based on
the gate values. For attention bias (Sec. 3.3.3), there are in-
dependent intra-modality biases for visual tokens and text
tokens separately. We leave the details of bias function b(·)
in the extra ablation study (Sec. 10). For each attention head
at each self-attention layer, we also include learnable scalar
inter-modality biases for the attention values between text
tokens and visual tokens. In Sec. 3.4, for temporal fusion,
apart from the current frame, we also take camera images
from T = 1 historical frame at the timestamp −0.5s as
model input. For multi-decoding aggregation (Sec. 3.5), the
model outputs K = 16 trajectories in parallel through Top-
p sampling (nucleus sampling) [21] (p = 0.9), which are
aggregated as one unique planning result. For both datasets,
the input images are resized to 448× 448 as model inputs.

Model initialization. To ensure the alignment within the
pretrained MLLM, we apply the following special rules to
relieve the disturbance of injected modules to the pretrained
weights in the early finetuning stage. The last FC-layer of
MLP for the position embeddings in Eq. 3 and Eq. 7 are zero
initialized. The learnable vacant feature fvac for sparse vol-
ume representation is also initialized as zeros (Eq. 8). We
also set the initial bias for each bin in the bias function b(·)
(Eq. 9) as zeros (details in Sec. 10). Finally, the temporal
fusion (Sec. 3.4), we maintain the channel-wise semantics
of visual features by initializing the weight matrix of the
FC layer as W =

[
I ∈ RC×C ;0C×(T−1)·C] and the bias

as zero. Based on the above rules, the inserted modules
would not significantly change the channel-wise semantics
of the visual features from original pretrained perspective
view features, which allows for a stable and efficient fine-
tuning process.

Input prompt and target output. The input prompt is
composed of the high-level behavior command and ego-
vehicle historical states. We represent all historical states in
the language space. The position, velocity, and acceleration
at each time stamp are represented with two floating num-
bers (two decimal places) separately for the x−component
and y−component in the ego-vehicle coordinate. The target
output is composed of meta-decision (Sec. 3.2 only in S4-
Driver) and future waypoints. The future waypoints are also
represented in the language space with two floating num-
bers for each time stamp. The historical and future states are
sampled at a frequency of 5Hz on WOMD-Planning-ADE



Assume I am at the coordinate 0, 0. 

The high-level behavior attention is: go straight forward. 

The past trajectory under vehicle coordinate is: -17.77, 0.03 
and -14.19, 0.02 and -10.63, 0.02 and -7.07, 0.01 and -3.53, 
0.01. The past ego velocity under vehicle coordinate is: 17.92, 
-0.04 and 17.81, -0.02 and 17.79, -0.03 and 17.72, -0.03 and 
17.66, -0.05. The past ego acceleration under vehicle 
coordinate is: -0.24, 0.10 and -0.49, 0.14 and -0.02, -0.13 
and -0.45, -0.06 and -0.31, -0.05. 
What is my future trajectory in next 5 seconds under vehicle 
coordinate?

The ego vehicle is going to keep speed then decelerate. 

The future trajectory under vehicle coordinate is: 3.53, -0.02 
and 7.04, -0.03 and 10.56, -0.05 and 14.07, -0.07 and 17.60, 
-0.09 and 21.13, -0.11 and 24.65, -0.13 and 28.17, -0.15 and 
31.69, -0.18 and 35.19, -0.20 and 38.68, -0.23 and 42.15, 
-0.26 and 45.61, -0.29 and 49.06, -0.33 and 52.48, -0.36 and 
55.90, -0.39 and 59.28, -0.42 and 62.65, -0.44 and 65.99, 
-0.47 and 69.31, -0.49 and 72.60, -0.51 and 75.86, -0.52 and 
79.07, -0.54 and 82.25, -0.56 and 85.39, -0.58.
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Figure 9. Example input prompt and target output on WOMD-
Planning-ADE.

where we consider the historical states of past 1s and future
waypoints of future 5s. On nuScenes dataset, we consider
the historical states of past 1s and future waypoints of fu-
ture 3s at a frequency of 2Hz. An example of the input and
output on WOMD-Planning-ADE is visualized in Fig. 9.

Heuristics for high-level behaviors. We consider the
seven behaviors for the ego-vehicle on WOMD-Planning-
ADE benchmark, which are determined based on the ego-
vehicle ground-truth future trajectories following heuristic
rules.
1. Stop: The ego-vehicle movement is < 5m and the max-

imal speed is < 2m/s.
2. Do left turn: The ego-vehicle does not stop. The final

heading angle is > 30◦. The final position is ≥ −5m
along x−axis.

3. Do left U-turn: The ego-vehicle does not stop. The final
heading angle is > 30◦. The final displacement is <

−5m along x−axis.
4. Do right turn: The ego-vehicle does not stop. The final

heading angle is < −30◦.
5. Go straight left: The ego-vehicle does not stop. The

final heading angle is in the range [−30◦, 30◦]. The final
displacement is > 5m along y−axis.

6. Go straight right: The ego-vehicle does not stop. The
final heading angle is in the range [−30◦, 30◦]. The final
displacement is < −5m along y−axis.

7. Go straight forward: The ego-vehicle does not stop.
The final heading angle is in the range [−30◦, 30◦].
The final displacement along y−axis is in the range
[−5m, 5m].

For the calculation of bADE metric in the model evaluation,
we follow the above rules to determine the behavior based
on the ground-truth future trajectories of 8s although our
planning horizon is only 5s. For the high-level behavior
command in the model inputs, “stop” is excluded to avoid
future information leakage. To determine the high-level be-
havior command input, we start from the ground-truth 8s
future trajectories. If none of behaviors 2-7 is satisfied, we
would prolong the future horizon by 2s until at least one of
behaviors 2-7 is satisfied. If the end of the collected trajec-
tory sequence is reached, we would just consider that sce-
nario as “go straight forward”.

Heuristics for meta-decisions. In Sec. 3.2, we design a
meta-decision strategy as a preliminary prediction before
the waypoints. The meta-decision of ego-vehicle includes
four categories determined with following heuristic rules
based on the ground-truth future information.
1. Keep stationary: The maximal speed is < 2m/s and

the final displacement is < 1.5m.
2. Keep speed: The ego-vehicle does not keep station-

ary. The average acceleration is in the range of
[−0.5m/s2, 0.5m/s2].

3. Accelerate: The ego-vehicle does not keep stationary.
The average acceleration is > 0.5m/s2.

4. Decelerate: The ego-vehicle does not keep stationary.
The average acceleration is < −0.5m/s2.

The model should firstly predict the meta-decision and then
auto-regressively output the future waypoints. On WOMD-
Planning-ADE with 5s future prediction horizon, we di-
vide the 5s into two stages of 2.5s, where meta-decisions
are predicted independently for each stage. On nuScenes
dataset with 3s prediction horizon, we only consider one-
stage meta-decision.

8. Behavior-wise Model Performance
In Tab. 7, we report the ADE@5s metric of S4-Driver
for each ego-vehicle behavior on WOMD-Planning-ADE
benchmark separately. Results show the superiority of S4-
Driver especially in complicated scenarios like turnings,



Methods ADE@5s for each behavior ADE@5s bADE@5sstop straight forward straight left straight right left turn right turn left U-turn

Vanilla PaLI 0.048 0.960 1.252 1.297 1.566 1.323 1.039 0.798 1.069
S4-Driver (ours) 0.063 0.843 1.077 1.177 1.252 1.158 0.925 0.693 0.928

S4-Driver* (ours) 0.065 0.806 0.957 1.074 1.124 1.027 0.756 0.655 0.830

Models that take high-quality objects, tracks, and roadgraphs as inputs instead of using raw camera images.

MotionLM 0.048 0.832 1.293 1.275 1.239 1.172 0.990 0.697 0.978

Table 7. Behavior-wise sliced metrics on WOMD-Planning-ADE benchmark. “*” denotes methods with internal data pretraining.

Camera configuration ADE@5s bADE@5s

front 0.765 1.036
front, front left/right 0.751 1.012

front, front left/right, side left/right 0.746 0.981

all eight surrounding cameras 0.732 0.985

Table 8. Ablation studies on camera configurations.

where a significant performance gain is witnessed from
vanilla PaLI baseline to S4-Driver. Motion planning for
these difficult behaviors requires a great understanding of
the roadgraph and other agents from raw camera images,
which reflects the strong reasoning ability of our proposed
spatio-temporal visual representation.

9. Additional Qualitative Results
In Fig. 10, we visualize more planning results on
WOMD-Planning-ADE. Examples cover different behav-
iors, speeds, lighting conditions, and weathers. Results
show the robust performance of S4-Driver in all these di-
verse scenarios.

10. Additional Ablation Studies
In this part, we conduct several additional ablation stud-
ies to further justify the design of our S4-Driver includ-
ing the camera configuration, relative attention bias, multi-
decoding aggregation, and motion tokens.
Camera configuration. We apply different configurations
of camera sensors in Tab. 8. Consistent with intuitions,
the front camera is the most important, which can solely
guarantee a reasonable planning performance. Adding
other cameras continuously improves the model perfor-
mance since they provide more and more complete infor-
mation of the surrounding environment. The three cameras
in the back can notably boost the planning model since they
provide cues about other agents behind ego-vehicle. This
information helps to determine the future ego-vehicle ve-
locities and accelerations.

Relative attention bias. We consider two types of relative
position bias function b(·) in Eq. 9.

1. Linear bias: The bias is linearly related to the relative
distance between tokens. For the sparse volume visual
tokens, b(x, y, z) = bx(∆x) + by(∆y) + bz(∆z), we
take the x−axis as an example,

bx(∆x) = τx · |∆x|, (14)

where τx is a learnable parameter separately for each at-
tention head at each layer, and ∆x is the relative position
between sparse volume tokens along x−axis. Similarly,
for 1D text tokens, the separate bias function is

bp(∆p) = τp · |∆p| (15)

where τp is a learnable parameter separately for each at-
tention head in each layer, and ∆p is the relative position
between text tokens.

2. Bin-wise bias (our choice): The relative positions
∆x,∆y,∆z (visual tokens) and ∆p (text tokens) for
each axis are divided into 32 bins independently. For
each axis, 16 bins cover the range [−8(m), 8(m)] lin-
early with an interval 1(m)2. The other 16 bins
symmetrically cover the range (−128(m),−8(m)) and
(8(m), 128(m)) in log scale, where the relative dis-
tances are truncated to at most 128(m). In this case, if
we take bx(·) as an example, the relative bias function is
written as

bx(∆x) = mx(bin(∆x)) (16)

where mx(·) maps each bin to a learnable bias value in-
dependently for each attention head at each self-attention
layer.

Tab. 9 justifies the design of bin-wise bias, which brings
greatly better performance. We think it is important to dis-
tinguish the two directions along each axis (e.g. front or
back) in the motion planning task. Besides, local feature
aggregation is more sensitive to close neighbors at each lo-
cality, so the bin-wise bias function has finer grains in close
distance compared to the linear bias function.

Multi-decoding aggregation. We dig into the multi-
decoding strategy which can bring notable performance

2The unit (m) is only for visual tokens (∆x,∆y,∆z) throughout this
paragraph.



Figure 10. Additional qualitative results of motion planning. We show the front left, front, front right cameras for each case.

Attention bias ADE@5s bADE@5s

no bias 0.750 1.005
linear bias function 0.770 1.082

bin-wise bias function 0.732 0.985
Table 9. Ablation studies on attention bias.

gain. The motivation is that the MLLM is prone to as-
signing high confidence scores to simple future behaviors
such as stop. To this end, we encourage the model to out-
put multiple future trajectories. Their aggregation serves as
the final planning result, which can counteract the model’s
high confidence in simple behaviors. In Tab. 10, we find
that 1) The aggregation of more decoded trajectories leads
to better performance. 2) Nucleus sampling can outper-
form beam search since it can generate more diverse out-
puts. 3) Weighted average is inferior to mean average since
the model is prone to assigning high confidence to simple
degenerated behaviors.

Motion tokens. Several prior works [46, 49] benefit from
specialized trajectory tokenization modules, which con-
verts motion trajectories into extra discrete tokens added
to the vocabulary of language models. However, in

Sample number Sample strategy Aggregation ADE@5s bADE@5s

1 greedy sampling - 0.728 0.986
4 beam search average 0.739 0.997
4 nucleus sampling average 0.709 0.941
4 nucleus sampling weighted average 0.747 1.005
16 nucleus sampling average 0.693 0.928

Table 10. Ablation studies on multi-decoding aggregation.

Trajectory representation ADE@5s bADE@5s

motion tokens 0.779 1.061
floating numbers 0.750 1.005

Table 11. Ablation studies on motion trajectory tokenization.

Tab. 11, the trajectory tokenization strategy similar with
MotionLM [46] hurts the performance of our S4-Driver in
comparison with naı̈ve floating number waypoints represen-
tation (Fig. 9). We also witness a much slower conver-
gence speed with this extra trajectory tokenization. Since
the MLLM is already pretrained on large-scale data, addi-
tionally injected trajectory tokens may not align with the
pretrained model. In contrast, the floating number repre-
sentation can align the historical and future states in the
language space to exploit the large-scale MLLM pretrain-
ing with lower requirement for finetuning.
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