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Figure 8. More serial images generated by SerialGen, showcasing its outstanding ability to maintain whole-body appearance consistency
across different types of characters, including non-human subjects.



Figure 9. Extension of Figure 8.

6. Details of the Reference Pose Injection Mod-
ule

We utilize a light convolutional network to extract pose fea-
ture maps from pose images. The architectural setup is de-
picted in Figure 10, where 3 → 3 conv, 32, ↑ 2 indicates a
convolutional layer with a kernel size of 3 → 3, a channel
number of 32, and a stride size of 2. The term silu refers
to a SiLU activation layer. The network processes the input
through several convolutional stages with channel counts of
16, 32, 96, 256, and 320, progressively reducing the spatial
resolution by a factor of 8. Before being added to the f̃r
feature in each self-attention module, an additional convo-
lutional layer is introduced, followed by interpolation-based
downsampling to align the dimensions of pose feature with
the f̃r feature.

7. Impact of 3D Style Bias

As depicted in the second paragraph of Section 3.4, we
demonstrate the impact of 3D style bias introduced by the
synthetic data. As shown in Figure 11, the standardization
stage introduces a slight 3D style bias when standardizing
images. This bias is effectively mitigated during the person-
alization stage. Specifically, as shown in the last row of Fig-
ure 11, given a head-only image, the standardization stage
generates clothing with a noticeable 3D style. However, the
personalization stage subsequently recovers realistic cloth-
ing appearances.

Figure 10. Details of the Reference Pose Injection Module.

8. More Comparison Results and Analysis

This part gives supplementary comparisons and analysis in
Section 4.2. We give more comparison results with Fast-
Composer, IP-Adapter and StoryMaker. As shown in the
Figure 12, we selected four different characters for analy-
sis, which include two anime characters and two real-life
humans. The evaluation prompts are categorized into four
descriptive types: action, background, viewpoint, and ex-



Figure 11. The standardization introduces a slight 3D style bias, particularly evident in head-only inputs (last row), resulting in clothing
with a 3D appearance. This bias is effectively mitigated during the personalization stage.

pression, arranged from the first row to the fourth row, re-
spectively. In the first row, both StoryMaker and our method
successfully alter the character’s action, with our method
maintaining a more accurate hairstyle. In the second row,
both FastComposer and our method produce images featur-
ing a clear jungle background; however, FastComposer does
not accurately depict the character’s clothes. In the third and
fourth rows, while IP-Adapter manages to capture the anime
character’s appearance, it struggles to modify the viewpoint
and expression, a limitation attributed to its unpaired one-
stage training strategy. Conversely, our method effectively
generates images that match the descriptions of expressions
and viewpoints accurately. Our approach demonstrates su-
perior performance in maintaining appearance consistency
and textual controllability compared to other leading-edge
methods.

9. User Study
As shown in Table 5, we design three criteria for com-
parison, where each criterion receives 600 valid votes (30
participant → 20 text-image pairs). The detailed questions

Method WAC TC VA

IP-Adapter [33] 20.00% 4.33% 5.67%
FastComposer [30] 4.67% 3.67% 0.67%
StoryMaker [36] 20.33 % 37.67% 22.67%
Ours 55.00% 54.33% 71.00%

Table 5. User preference in personalized image generation, eval-
uated across three criteria: whole-body appearance consistency
(WAC), text controllability (TC), and visual appeal (VA).

are as follows: 1) Whole-body Appearance Consistency:
Which method best preserves the input character’s whole-
body appearance? 2) Text Controllability: Which method
generates images that best align with the input text prompt?
3) Visual Appeal: Which method produces the most visu-
ally appealing image? To ensure objectivity, the names of
all methods are anonymized, and the methods are presented
in a randomized order for each question.



Figure 12. More comparison with other methods.

10. Limitations of Unpaired Training
In these experiments, we train models on unpaired image
data, using identical images as both reference and target.
For the reference encoder, we employ IP-Adapter [33],
while SDXL is utilized as the diffusion model. The feature
size extracted from the reference image can be adjusted by

modifying a setup parameter in IP-Adapter, known as the
number of token features. An increase in the number of to-
ken features corresponds to a more powerful reference en-
coder.

We systematically train a series of IP-Adapter reference
encoders, including both powerful and weak configurations,



Figure 13. Visual comparison of different numbers of token features. Leftmost is the reference image. Token-i indicates the model trained
with a token feature number of i.

Figure 14. Comparison of different numbers of token features .

by varying the number of token features. Figure 13 presents
some qualitative results with varying numbers of tokens.
From these results, it is evident that unpaired training strug-
gles to meet the objectives of personalized generation tasks:
the models either compromise text controllability to main-
tain high appearance consistency or sacrifice appearance
consistency to enhance text controllability. In the settings
of powerful encoders—those equipped with a larger num-
ber of tokens—the models can easily replicate the reference
image, achieving high appearance consistency but showing
inadequate responsiveness to text prompts. Conversely, in
the settings of weak encoders, there is a better alignment
with text prompts, albeit at the expense of compromised ap-
pearance consistency. The quantitative results depicted in
Figure 14 also align with these visual observations. As the
number of tokens increases, indicating more powerful en-

Method FVD↑ FID-VID↑
DisCo [28] 292.8 59.9
MagicPose [2] - 46.3
MagicAnimate [31] 179.07 21.75
Animate Anyone [15] 171.9 -
Champ [37] 160.82 21.07
TCAN [16] 154.84 19.42
Ours 149.95 14.75

Table 6. Quantitative comparison on TikTok dataset.

coders, there is an observed rise in the CLIP-I score, from
83.94 to 92.07, while the CLIP-T score decreases, moving
from 19.03 to 16.88.

11. Comparison to Human Image Animation
Models

As discussed in Section 4.3.2, we compare the architec-
ture of our standardization model with other leading hu-
man image animation models, including DisCo [28], Mag-
icPose [2], MagicAnimate [31], Animate Anyone [15],
Champ [37], and TCAN [16]. Experiments are conducted
using the benchmark dataset TikTok [28]. No additional
training data was utilized to ensure a fair comparison. To
enable training on video datasets, a temporal layer [15]
is incorporated into the architecture described in Section
3.3. The results presented in Table 6 demonstrate that our
method significantly outperforms existing state-of-the-art
approaches, achieving superior performance in both FVD
and FID-VID metrics. These results justify our architec-



Module CLIP-I ↓ Face Sim.↓
after standardization 89.47 0.69
after personalization 85.49 0.53

Table 7. Ablation study on identity loss at each stage.

tural choices.

12. Ablation Study on Identity Loss
We conduct an ablation study to evaluate the impact of each
stage on identity preservation. As shown in Table 7, after
the standardization stage, CLIP-I is 89.47, and Face Sim. is
0.69. Following the personalization stage, CLIP-I decreases
to 85.49, while Face Sim. drops to 0.53. These results in-
dicate that identity consistency remains relatively high after
the standardization stage.

13. More Quantitative Comparisons
We also made a quantitative comparison between our
method and the recent face-oriented approach LCM-
Lookahead [9], which achieved a Face Sim. score of 0.46,
CLIP-I score of 74.56, and CLIP-T score of 24.63 on the
test dataset. Our method outperforms LCM-Lookahead in
both CLIP-I and Face Sim. metrics, with only a disadvan-
tage in CLIP-T. Notably, LCM-Lookahead achieves good
text controllability at the cost of consistency.


