Training Data Provenance Verification: Did Your Model Use Synthetic Data
from My Generative Model for Training?

Supplementary Material

A. Proofs

Theorem 1. Assume M is trained on synthetic data gener-
ated by a text-to-image model G, and a set of text prompts
Ti, ie., Py(x) = P(x|G, 7). M can be trained on either
real data or synthetic data generated by any text-to-image
model. Based on the generalization errors of M and M on
the target domain T = {X, P(x|G, T¢)}, we have:

sup |Aer| < sup |Aer|, 3)

Py(x)=P(x|G,T2) Py(z) LG

where Aer represents the difference in generalization er-
ror between M and M on the target domain T, expressed
as Aep = er(M) — eT(M). Py(x) L G denotes that
Py () is independent of G, meaning Py(x) = P(x|G’, T3)
or Py(x) = Pgr(x), where G' is a text-to-image model dif-
ferent from G and Pr(x) represents the distribution of real
data. Ty, T and T; are distinct sets of text prompts.

Proof. Theorem 1 in [2] states the upper bound of the gen-
eralization error of model M’ on the target domain 7'. Let
‘H be a hypothesis space with VC dimension d’, and let m/’
be the sample size of the dataset in the source domain S.
Then, with probability at least 1 — §, for every M’ € H:

4 2em’
er(M') < éS(M’)+\/m, (d’ log ‘Z") +dy(Ps, Pr)+A,

“)
where e7(M’) and €s(M’) represent the generalization
error of M’ on the target domain and the empirical er-
ror of M’ on the source domain, respectively. Ps and
Pr denote the marginal probability distributions of the
source and target domains, respectively. dy (Ps, Pr) is
the H-divergence between the source and target domains,
which measures the similarity between the two distribu-
tions (source and target) within the hypothesis space H. A
smaller dy; (Ps(x), Pr(x)) indicates that the distributions
of the source and target domains are closer. A is a constant
and e is the base of the natural logarithm.

Substitute Pr = P(x|G, T) into Eq. (4), for M with the
source domain distribution P(x|G, T1):

( 26m>
)

+dy(P(z|G, Th), P(x|G, Tr)) +

For M with the source domain distribution

P(z|G, Tz),

similarly:
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P(z|G,Tp)) + A

1

~ ~ 4 ~
€T(M1) < és(Ml) + \/m (C“O
+dy(P(z|G, T2),
To distinguish from later cases, we denote M trained in this

situation as M 1 and m as my. For M with the source do-
main distribution P(z|G’, 7T2), similarly:
2emig >
d (7

er(V) < és(Vly) + ¢é<m

+dun (P (z|G', Ta), P(|G, Tr)) +

We denote M trained in this situation as Mg and m as ma.

We denote the upper bounds in Eq. (5), Eq. (6), and
Eq. (7) as &, &1, and 52, respectively. Then we calculate
the upper bound of |ep (M) — ep(M)):

sup [er (M) — er(My)| = max{¢, &} ®)

For the upper bound of |eq (M) — ep(Ms)]:

sup ler (M) — er(M2)| = max{{, &2} ©)
Assuming that M is trained on the same amount of
source domain data in both cases, i.e., m; = mq. Addi-
tionally, assuming the empirical errors on the training set
are also the same, i.e., es(Ml) = ég(My). Therefore, the
only difference between ¢, and & lies in the dy (-, ) term.
Since the generative model in the conditions for P(x|G, 7T2)
and P(x|G, T;) is the same while the text conditions differ,
whereas both differ in the conditions for P(x|G’, 73) and
P(x|G,Ty), it follows that:
dy (P(x|G, T2), P(x|G, Tt)) < dy (P (|G, T2), P(|G, T))
(10)
Therefore, £, < &, ie.,

sup lep (M) — ep(My)| < sup |ep(M) — ep(My)| (11)

Alternatively, it can be expressed as:

sup |Aer| < sup
Py (z2)=P(x|G,T2) Py (z)=P(z|G’,T2)

[Aer|, (12)

where AGT = ET(M) — GT(M).



Similarly, when M is trained on real data  ~ Pgr(x),
we have:

sup |Aer| < sup |Aer| (13)
Py (x)=P(x|G,T2) Py (x)=Pgr(x)

By combining Eq. (12) and Eq. (13), we obtain:

sup |Aer| < sup
Py (x)=P(x|G,T2) Py(x) LG

[Aer|,  (14)

B. The Details of Experiments
B.1. Datasets Used

CIFAR10 [20]: The CIFARI10 dataset consists of 32x32
colored images with 10 classes. There are 50000 training
images and 10000 test images.

CIFAR100 [20]: The CIFAR100 dataset consists of 32x32
coloured images with 100 classes. There are 50000 training
images and 10000 test images.

ImageNet-100 [40]: A randomly chosen subset of
ImageNet-1K [5], which has larger sized coloured images
with 100 classes. There are approximately 126,689 train-
ing images and 5000 test images. As is commonly done,
we resize all images to be of size 224x224. The specific
categories we use are listed in ImageNet-100.txt in the sup-
plementary material.

B.2. Pre-trained Text-to-image Models Used
We use four pre-trained text-to-image models, as follows:

Stable Diffusion v1.4 [38]: Stable Diffusion v1.4 is
trained on 512x512 images from a subset of the LAION-
5B [41] dataset. This model uses a frozen CLIP
ViT-L/14 text encoder to condition the model on text
prompts. Its pre-trained weights can be obtained from
https://huggingface.co/CompVis/stable-
diffusion-v1-4.

Latent Consistency Model [28]: Latent consistency
model is trained on 768x768 images from a sub-
set of the LAION-5B [41] dataset, named LAION-
Aesthetics. Its pre-trained weights can be obtained from
https://huggingface.co/SimianLuo/LCM_
Dreamshaper_v7.

Pixart-« [4]: Pixart-c is trained on images from SAM [19]
dataset, whose text prompts are generated by LLaVA [23].
Its pre-trained weights can be obtained from https: //
huggingface.co/PixArt-alpha/PixArt-XL-
2-512x512.

Stable Cascade [34]: Stable Cascade is built upon
the Wiirstchen architecture [34], and trained on im-
ages from a subset of the LAION-5B [41] dataset.

Its pre-trained weights can be obtained from https :
/ / huggingface . co/ stabilityai / stable -
cascade.

B.3. Parameter Setting Details

* Experiments conducted on CIFAR10/CIFAR100: We
use the methods in [42] to generate 60,000 images as
CIFAR10-Syn and CIFAR100-Syn for training the suspi-
cious models. Specifically, we generate 20,000 images
each using the techniques of “Class Prompt”, “Multi-
Domain”, and “Random Unconditional Guidance”. Addi-
tionally, the shadow dataset and validation dataset retain
default parameters except for the text prompts and reso-
lution. Focal loss with v = 2 and o = 0.25. All models
are trained using the AdamW optimizer.

» Experiments conducted on ImageNet-100: We use the
methods in [40] to generate 100,000 images as ImageNet-
100-Syn for training the suspicious models. Specifically,
Specifically, we use “c,d.” to generate these images,
where ¢ is the class name, and d,. refers to the definition
of class ¢ provided by WordNet [30]. Guidance scale is
2. Additionally, the shadow dataset and validation dataset
retain default parameters except for the text prompts and
resolution. Focal loss with v = 2 and a = 0.25. All
models are trained using the AdamW optimizer.

B.4. The Details of Han et al.’s Work

Unlike our setup, the work by Han et al. assumes that the
defender has access to multiple different generative mod-
els to train an attributor. To enable comparison with this
method, we followed this setup when using it. Specifically,
we assume that the defender, in addition to having G4, also
possesses the other three text-to-image models mentioned
in the paper (whereas in our setup, the defender has only
one text-to-image model, G4). Using these generative mod-
els, we create four shadow datasets following the same ap-
proach, as well as one validation dataset generated using G4
in the same manner.

Based on each shadow dataset, we train 16 shadow mod-
els, all of which are ResNet18 with varied training hyper-
parameters. In total, we obtain 64 shadow models. Us-
ing these shadow models, we infer logits on the validation
dataset to train an attributor. The attributor is a two-layer
fully connected network with an input dimension matching
the dimension of the logits and an output dimension of 2.
It classifies logits of shadow models trained on synthetic
data generated by G4 as 1 and others as 0. The attributor is
trained for 10 epochs.

B.5. The Details of Interference Resistance Experi-
ments

Multiple training data sources for M, . In this experi-
ment, the methods for generating the synthetic dataset and
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The Suspect’s Data Sources

The Defender’s Generative Model G; Data Sources Unrelated to G4 TP FP FN TN Accuracy FlScore AUROC

Latent Consistency Model 32 32
. . PixArt-« 32 32

Stable Diffusion [38] v1.4 Stable Cascade 32 32 2 3 0.500 0.286 0.500
Real Data 32 32
Stable Diffusion v1.4 32 32
. PixArt-« 32 32

Latent Consistency Model [28] Stable Cascade 32 32 2 3 0.500 0.286 0.500
Real Data 32 32
Stable Diffusion v1.4 32 32
. Latent Consistency Model 32 32

PixArt-« [4] Stable Cascade 32 32 2 3 0.500 0.286 0.500
Real Data 32 32
Stable Diffusion v1.4 32 32
) Latent Consistency Model 32 32

Stable Cascade [34] Pix Art-ce 32 32 2 3 0.500 0.286 0.500
Real Data 32 32

Average Value 0.500 0.286 0.500

Table Al. The results of random classification on CIFAR10.

training the network follow the settings in Sec. 4.1, with the
only difference being that the training dataset for the suspi-
cious model consists of both the synthetic and real datasets.

Fine-tuning G ;. In this experiment, we fine-tune G4 using
LoRA with a batch size of 16, a learning rate of le-4 and a
resolution of 512. The methods for generating dataset and
training network follow the settings in Sec. 4.1.

Fine-tuning M, ;. In this experiment, we fine-tune the sus-
picious model with a learning rate of le-5, a weight decay
of le-4, a batch size of 64, and the cross-entropy loss func-
tion. The methods for generating the synthetic dataset and
training the network follow the settings in Sec. 4.1.

B.6. Hypothesis Testing

We represent the generalization errors of Mg, and M,
by the sets of accuracies Aq,, and Ag,s for each batch on
the validation dataset. Then we use the Grubbs test to de-
termine whether the mean of A, is a low-value outlier
of Asqw. The pseudocode is shown in Algorithm 1, where
t1—2 n—2 is the critical value of the t-distribution with de-
grees of freedom n — 2 and significance level . When
G > Gy, we consider mean(Asys) to be a low-value out-
lier of A 4., meaning the generalization error gap between
two models is significant, and M, s is deemed legitimate.
When G < Gy, mean(Asys) falls within the distribution of
Asaw, indicating that the generalization errors of two mod-
els are close, and My, is deemed illegal.

C. Results on CLIP

We fine-tuned CLIP [35] on ImageNet-100 using hyperpa-
rameters in Sec. 4.1, with ResNet50 and ViT-B. Then We
calculate accuracies of TrainProVe and Han et al.’s work on

Algorithm 1 Grubbs’ Hypothesis Test

1: Input: A4, Asys, significance level « = 0.05

20 Mg = mean(Asdw ), Ssdw = Std(Asdw)

3: n=len(Asqw), Msus = mean(Agys)
(tlf%.n—Q)Z

"_2+(t17%,n72)2

s — —-1)
b = Matdu=mas G _ (.
G Ssdw ’GO Vn

5: Output: G > G

Stable Diffusion v1.4. Finally, the accuracy of TrainProVe
reached 0.75, while Han et al.’s work only achieved 0.56,
meaning that compared to the baseline, TrainProVe can still
be applied to more complex scenarios.

D. More Experimental Results

Here, we present the specific results of different methods on
various datasets (as shown in Tab. | of the paper), as shown
in Tab. Al - Tab. Al4.



The Suspect’s Data Sources

The Defender’s Generative Model G; Data Sources Unrelated to G4 TP FP FN TN Accuracy FlScore AUROC

Latent Consistency Model 0 64
e PixArt-« 0 64
Stable Diffusion [38] v1.4 Stable Cascade 60 4 14 50 0.756 0.606 0.824
Real Data 60 4
Stable Diffusion v1.4 4 60
. PixArt-« 0 o4
’) o}
Latent Consistency Model [28] Stable Cascade 64 0 ’ 6@ 0.969 0.928 0.980
Real Data 4 60
Stable Diffusion v1.4 0 64
. ) Latent Consistency Model 0 o4
PixArt-« [4] Stable Cascade 47 17 9 55 0.919 0.783 0.850
Real Data 0 64
Stable Diffusion v1.4 60 4
) Latent Consistency Model 53 11
Stable Cascade [34] Pix Artece 0 o4 0 64 0.428 0.000 0.268
Real Data 6 58
Average Value 0.768 0.579 0.731

Table A2. The results of Han et al.’s method on CIFAR10.

The Suspect’s Data Sources

The Defender’s Generative Model G; Data Sources Unrelated to G4 TP FP FN TN Accuracy FlScore AUROC

Latent Consistency Model 4 60
o PixArt-« 4 60
Stable Diffusion [38] v1.4 Stable Cascade 64 0 7 57 0.941 0.871 0.963
Real Data 4 60
Stable Diffusion v1.4 0 64
. PixArt-« 0 64
9)
Latent Consistency Model [28] Stable Cascade 22 42 0 64 0.869 0.512 0.672
Real Data 0 64
Stable Diffusion v1.4 25 39
. , Latent Consistency Model 32 32
PixArt-« [4] Stable Cascade 64 0 64 0 0.609 0.506 0.756
Real Data 4 60
Stable Diffusion v1.4 17 47
) Latent Consistency Model 5 59
Stable Cascade [34] Pix Art-or 64 0 19 45 0.828 0.699 0.893
Real Data 14 50
Average Value 0.812 0.647 0.821

Table A3. The results of TrainProVe-Sim on CIFAR10.

The Suspect’s Data Sources

The Defender’s Generative Model G; Data Sources Unrelated to G4 TP FP FN TN Accuracy FIScore AUROC

Latent Consistency Model 1 63
e PixArt-« 0 o4
Stable Diffusion [38] v1.4 Stable Cascade 57 17 1153 0.928 0.832 0.914
Real Data 4 60
Stable Diffusion v1.4 0 64
. PixArt-« 0 64
iQ o)
Latent Consistency Model [28] Stable Cascade 60 4 0 64 0.988 0.968 0.969
Real Data 0 64
Stable Diffusion v1.4 9 55
. Latent Consistency Model 22 42
PixArt-« [4] Stable Cascade 64 0 410 0.725 0.593 0.828
Real Data 3 61
Stable Diffusion v1.4 9 55
, Latent Consistency Model 16 48
Stable Cascade [34] Pix Art-or 64 0 3 4 0.831 0.703 0.895
Real Data 6 58
Average Value 0.868 0.774 0.902

Table A4. The results of TrainProVe-Ent on CIFAR10.



The Suspect’s Data Sources

The Defender’s Generative Model G; Data Sources Unrelated to G4 TP FP FN TN Accuracy FlScore AUROC

Latent Consistency Model 32 32
e PixArt-« 32 32
Stable Diffusion [38] v1.4 Stable Cascade 32 32 2 3 0.500 0.286 0.500
Real Data 32 32
Stable Diffusion v1.4 32 32
. PixArt-« 32 32
’) o}
Latent Consistency Model [28] Stable Cascade 32 32 2 3 0.500 0.286 0.500
Real Data 32 32
Stable Diffusion v1.4 32 32
. ) Latent Consistency Model 32 32
PixArt-« [4] Stable Cascade 32 32 3 1 0.500 0.286 0.500
Real Data 32 32
Stable Diffusion v1.4 32 32
) Latent Consistency Model 32 32
Stable Cascade [34] Pix Artece 32 32 2 3 0.500 0.286 0.500
Real Data 32 32
Average Value 0.500 0.286 0.500

Table AS. The results of random classification on CIFAR100.

The Suspect’s Data Sources TP FP FN TN Accuracy FlScore AUROC

The Defender’s Generative Model G; Data Sources Unrelated to G4

Latent Consistency Model 0 64
e . PixArt-« 9 55
Stable Diffusion [38] v1.4 Stable Cascade 64 0 2 3 0.772 0.637 0.861
Real Data 32 32
Stable Diffusion v1.4 0 64
. PixArt-« 0 64
9)
Latent Consistency Model [28] Stable Cascade 64 0 0 64 1.000 1.000 1.000
Real Data 0 64
Stable Diffusion v1.4 0 64
. , Latent Consistency Model 0 o4
PixArt-« [4] Stable Cascade 36 28 » 0.791 0.518 0.705
Real Data 7 57
Stable Diffusion v1.4 28 36
) Latent Consistency Model 64 0
Stable Cascade [34] Pix Arteor 4 60 4717 0.356 0.037 0.246
Real Data 7 57
Average Value 0.730 0.548 0.703

Table A6. The results of Han et al.’s Method on CIFAR100.

9,
The Suspect’s Data Sources TP FP FN TN Accuracy FlScore AUROC

The Defender’s Generative Model G; Data Sources Unrelated to G4

Latent Consistency Model 32 32
- PixArt-« 29 35
Stable Diffusion [38] v1.4 Stable Cascade 28 36 2 1 0.509 0.263 0.498
Real Data 28 36
Stable Diffusion v1.4 12 52
. PixArt-« 12 52
S 2
Latent Consistency Model [28] Stable Cascade 32 32 » 0 0.672 0.379 0.607
Real Data 10 54
Stable Diffusion v1.4 32 32
. Latent Consistency Model 32 32
PixArt-« [4] Stable Cascade 32 32 3 3 0.500 0.286 0.500
Real Data 32 32
Stable Diffusion v1.4 16 48
) Latent Consistency Model 32 32
Stable Cascade [34] Pix Artece 32 32 26 38 0.619 0.344 0.574
Real Data 16 48
Average Value 0.575 0.318 0.545

Table A7. The results of TrainProVe-Sim on CIFAR100.



The Suspect’s Data Sources

The Defender’s Generative Model G; Data Sources Unrelated to G4 TP FP FN TN Accuracy FlScore AUROC

Latent Consistency Model 64 0
e PixArt-« 5 9
Stable Diffusion [38] v1.4 Stable Cascade 64 0 3 6 0.347 0.380 0.592
Real Data 32 32
Stable Diffusion v1.4 25 39
. PixArt-« 32 32
’) o}
Latent Consistency Model [28] Stable Cascade 64 0 43 16 0.628 0.518 0.768
Real Data 14 50
Stable Diffusion v1.4 60 4
. ) Latent Consistency Model 64 0
PixArt-« [4] Stable Cascade 64 0 64 0 0.253 0.349 0.533
Real Data 51 13
Stable Diffusion v1.4 41 23
) Latent Consistency Model 62 2
Stable Cascade [34] Pix Artece 64 0 64 0 0.363 0.386 0.602
Real Data 37 27
Average Value 0.398 0.408 0.624

Table AS8. The results of TrainProVe-Ent on CIFAR100.

The Suspect’s Data Sources TP FP FN TN Accuracy FlScore AUROC

The Defender’s Generative Model G; Data Sources Unrelated to G4

Latent Consistency Model 0 64
. . PixArt-« 0 64
Stable Diffusion [38] v1.4 Stable Cascade 64 0 0 64 0.988 0.970 1.000
Real Data 0 o4
Stable Diffusion v1.4 0 64
. PixArt-« 0 64
2
Latent Consistency Model [28] Stable Cascade 64 0 0 64 1.000 1.000 1.000
Real Data 0 64
Stable Diffusion v1.4 0 64
. , Latent Consistency Model 0 o4
PixArt-« [4] Stable Cascade 55 9 0 64 0.972 0.924 0.930
Real Data 0 64
Stable Diffusion v1.4 0 o4
) Latent Consistency Model 0 o4
Stable Cascade [34] Pix Art-or 63 1 0 64 0.997 0.992 0.992
Real Data 0 o4
Average Value 0.992 0.979 0.981

Table A9. The results of TrainProVe on CIFAR100.

9,
The Suspect’s Data Sources TP FP FN TN Accuracy FlScore AUROC

The Defender’s Generative Model G; Data Sources Unrelated to G4

Latent Consistency Model 32 32
R PixArt-« 32 32
Stable Diffusion [38] v1.4 Stable Cascade 32 32 » 1 0.500 0.286 0.500
Real Data 32 32
Stable Diffusion v1.4 32 32
. PixArt-« 32 32
iQ o)
Latent Consistency Model [28] Stable Cascade 32 32 2 3 0.500 0.286 0.500
Real Data 32 32
Stable Diffusion v1.4 32 32
. Latent Consistency Model 32 32
PixArt-« [4] Stable Cascade 32 32 3 3 0.500 0.286 0.500
Real Data 32 32
Stable Diffusion v1.4 32 32
) Latent Consistency Model 32 32
Stable Cascade [34] Pix Art-or 32 32 2 0 0.500 0.286 0.500
Real Data 32 32
Average Value 0.500 0.286 0.500

Table A10. The results of random classification on ImageNet-100.



The Suspect’s Data Sources

The Defender’s Generative Model G; Data Sources Unrelated to G4 TP FP FN TN Accuracy FlScore AUROC

Latent Consistency Model 31 33
. . PixArt-« 0 64
Stable Diffusion [38] v1.4 Stable Cascade 32 32 6 58 0.684 0.388 0.615
Real Data 32 32
Stable Diffusion v1.4 15 49
. PixArt-« 6 58
’) o}
Latent Consistency Model [28] Stable Cascade 26 38 | 63 0.772 0.416 0.635
Real Data 13 51
Stable Diffusion v1.4 24 40
. ) Latent Consistency Model 3 61
PixArt-« [4] Stable Cascade 64 0 2 3 0.753 0.618 0.846
Real Data 20 44
Stable Diffusion v1.4 32 32
) Latent Consistency Model 40 24
Stable Cascade [34] Pix Artece 32 32 » 0 0.475 0.276 0.484
Real Data 32 32
Average Value 0.671 0.425 0.645

Table A11. The results of Han ef al.’s Method on ImageNet-100.

The Suspect’s Data Sources TP FP FN TN Accuracy FlScore AUROC

The Defender’s Generative Model G; Data Sources Unrelated to G4

Latent Consistency Model 32 32
o PixArt-« 30 34
Stable Diffusion [38] v1.4 Stable Cascade 32 32 2 3 0.506 0.288 0.504
Real Data 32 32
Stable Diffusion v1.4 16 48
. PixArt-« 16 48
9)
Latent Consistency Model [28] Stable Cascade 28 36 26 38 0.641 0.327 0.564
Real Data 21 43
Stable Diffusion v1.4 28 36
. , Latent Consistency Model 32 32
PixArt-« [4] Stable Cascade 32 32 3 3 0.519 0.294 0.512
Real Data 30 34
Stable Diffusion v1.4 26 38
) Latent Consistency Model 31 33
Stable Cascade [34] Pix Art-or 32 32 % 36 0.553 0.309 0.533
Real Data 26 38
Average Value 0.555 0.305 0.528

Table A12. The results of TrainProVe-Sim on ImageNet-100.

9,
The Suspect’s Data Sources TP FP FN TN Accuracy FlScore AUROC

The Defender’s Generative Model G; Data Sources Unrelated to G4

Latent Consistency Model 53 11
e PixArt-« 60 4
Stable Diffusion [38] v1.4 Stable Cascade 64 0 62 2 0.266 0.353 0.541
Real Data 60 4
Stable Diffusion v1.4 41 23
. PixArt-« 48 16
S 2
Latent Consistency Model [28] Stable Cascade 51 13 37 27 0.441 0.363 0.574
Real Data 40 24
Stable Diffusion v1.4 56 8
. Latent Consistency Model 41 23
PixArt-« [4] Stable Cascade 60 4 59 5 0.338 0.361 0.563
Real Data 52 12
Stable Diffusion v1.4 53 11
Stable Cascade [34] Latent Consistency Model -y, 36 28 = 40, 0377 0.590
PixArt-« 53 11
Real Data 52 12
Average Value 0.356 0.364 0.567

Table A13. The results of TrainProVe-Ent on ImageNet-100.



The Suspect’s Data Sources TP FP FN TN Accuracy FlScore AUROC

The Defender’s Generative Model G; Data Sources Unrelated to G4

Latent Consistency Model 0 64
. . PixArt-« 0 64
Stable Diffusion [38] v1.4 Stable Cascade 64 0 1153 0.819 0.688 0.887
Real Data 47 17
Stable Diffusion v1.4 0 64
. PixArt-« 0 64
2
Latent Consistency Model [28] Stable Cascade 2 62 0 64 0.806 0.061 0.517
Real Data 0 64
Stable Diffusion v1.4 29 35
. , Latent Consistency Model 0 o4
PixArt-« [4] Stable Cascade 64 0 24 40 0.734 0.601 0.834
Real Data 32 32
Stable Diffusion v1.4 32 32
) Latent Consistency Model 0 o4
Stable Cascade [34] Pix Art-or 59 5 0 64 0.784 0.631 0.836
Real Data 32 32
Average Value 0.786 0.495 0.769

Table A14. The results of TrainProVe on ImageNet-100.
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