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A. Proofs
Theorem 1. Assume M is trained on synthetic data gener-
ated by a text-to-image model G, and a set of text prompts
T1, i.e., P1(x) = P (x|G, T1). M̂ can be trained on either
real data or synthetic data generated by any text-to-image
model. Based on the generalization errors of M and M̂ on
the target domain T = {X , P (x|G, Tt)}, we have:

sup
P2(x)=P (x|G,T2)

|∆ϵT | ≤ sup
P2(x)⊥G

|∆ϵT |, (3)

where ∆ϵT represents the difference in generalization er-
ror between M and M̂ on the target domain T , expressed
as ∆ϵT = ϵT (M) − ϵT (M̂). P2(x) ⊥ G denotes that
P2(x) is independent of G, meaning P2(x) = P (x|G′, T2)
or P2(x) = PR(x), where G′ is a text-to-image model dif-
ferent from G and PR(x) represents the distribution of real
data. T1, T2 and Tt are distinct sets of text prompts.

Proof. Theorem 1 in [2] states the upper bound of the gen-
eralization error of model M ′ on the target domain T . Let
H be a hypothesis space with VC dimension d′, and let m′

be the sample size of the dataset in the source domain S.
Then, with probability at least 1− δ, for every M ′ ∈ H:

ϵT (M
′) ≤ ϵ̂S(M

′)+

√
4

m′

(
d′ log

2em′

d′

)
+dH(PS , PT )+λ,

(4)
where ϵT (M

′) and ϵ̂S(M
′) represent the generalization

error of M ′ on the target domain and the empirical er-
ror of M ′ on the source domain, respectively. PS and
PT denote the marginal probability distributions of the
source and target domains, respectively. dH(PS , PT ) is
the H-divergence between the source and target domains,
which measures the similarity between the two distribu-
tions (source and target) within the hypothesis space H. A
smaller dH(PS(x), PT (x)) indicates that the distributions
of the source and target domains are closer. λ is a constant
and e is the base of the natural logarithm.

Substitute PT = P (x|G, Tt) into Eq. (4), for M with the
source domain distribution P (x|G, T1):

ϵT (M) ≤ ϵ̂S(M) +

√
4

m

(
d log

2em

d

)
+dH(P (x|G, T1), P (x|G, Tt)) + λ

(5)

For M̂ with the source domain distribution P (x|G, T2),

similarly:

ϵT (M̂1) ≤ ϵ̂S(M̂1) +

√
4

m̂1

(
d̂ log

2em̂1

d̂

)
+dH(P (x|G, T2), P (x|G, Tt)) + λ

(6)

To distinguish from later cases, we denote M̂ trained in this
situation as M̂1 and m as m̂1. For M̂ with the source do-
main distribution P (x|G′, T2), similarly:

ϵT (M̂2) ≤ ϵ̂S(M̂2) +

√
4

m̂2

(
d̂ log

2em̂2

d̂

)
+dH(P (x|G′, T2), P (x|G, Tt)) + λ

(7)

We denote M̂ trained in this situation as M̂2 and m as m̂2.
We denote the upper bounds in Eq. (5), Eq. (6), and

Eq. (7) as ξ, ξ̂1, and ξ̂2, respectively. Then we calculate
the upper bound of |ϵT (M)− ϵT (M̂1)|:

sup |ϵT (M)− ϵT (M̂1)| = max{ξ, ξ̂1} (8)

For the upper bound of |ϵT (M)− ϵT (M̂2)|:

sup |ϵT (M)− ϵT (M̂2)| = max{ξ, ξ̂2} (9)

Assuming that M̂ is trained on the same amount of
source domain data in both cases, i.e., m̂1 = m̂2. Addi-
tionally, assuming the empirical errors on the training set
are also the same, i.e., ϵ̂S(M̂1) = ϵ̂S(M̂2). Therefore, the
only difference between ξ̂1 and ξ̂2 lies in the dH(·, ·) term.
Since the generative model in the conditions for P (x|G, T2)
and P (x|G, Tt) is the same while the text conditions differ,
whereas both differ in the conditions for P (x|G′, T2) and
P (x|G, Tt), it follows that:

dH(P (x|G, T2), P (x|G, Tt)) ≤ dH(P (x|G′, T2), P (x|G, Tt))
(10)

Therefore, ξ̂1 ≤ ξ̂2, i.e.,

sup |ϵT (M)− ϵT (M̂1)| ≤ sup |ϵT (M)− ϵT (M̂2)| (11)

Alternatively, it can be expressed as:

sup
P2(x)=P (x|G,T2)

|∆ϵT | ≤ sup
P2(x)=P (x|G′,T2)

|∆ϵT |, (12)

where ∆ϵT = ϵT (M)− ϵT (M̂).



Similarly, when M̂ is trained on real data x ∼ PR(x),
we have:

sup
P2(x)=P (x|G,T2)

|∆ϵT | ≤ sup
P2(x)=PR(x)

|∆ϵT | (13)

By combining Eq. (12) and Eq. (13), we obtain:

sup
P2(x)=P (x|G,T2)

|∆ϵT | ≤ sup
P2(x)⊥G

|∆ϵT |, (14)

B. The Details of Experiments
B.1. Datasets Used

CIFAR10 [20]: The CIFAR10 dataset consists of 32x32
colored images with 10 classes. There are 50000 training
images and 10000 test images.

CIFAR100 [20]: The CIFAR100 dataset consists of 32x32
coloured images with 100 classes. There are 50000 training
images and 10000 test images.

ImageNet-100 [40]: A randomly chosen subset of
ImageNet-1K [5], which has larger sized coloured images
with 100 classes. There are approximately 126,689 train-
ing images and 5000 test images. As is commonly done,
we resize all images to be of size 224x224. The specific
categories we use are listed in ImageNet-100.txt in the sup-
plementary material.

B.2. Pre-trained Text-to-image Models Used
We use four pre-trained text-to-image models, as follows:

Stable Diffusion v1.4 [38]: Stable Diffusion v1.4 is
trained on 512x512 images from a subset of the LAION-
5B [41] dataset. This model uses a frozen CLIP
ViT-L/14 text encoder to condition the model on text
prompts. Its pre-trained weights can be obtained from
https://huggingface.co/CompVis/stable-
diffusion-v1-4.

Latent Consistency Model [28]: Latent consistency
model is trained on 768x768 images from a sub-
set of the LAION-5B [41] dataset, named LAION-
Aesthetics. Its pre-trained weights can be obtained from
https://huggingface.co/SimianLuo/LCM_
Dreamshaper_v7.

Pixart-α [4]: Pixart-α is trained on images from SAM [19]
dataset, whose text prompts are generated by LLaVA [23].
Its pre-trained weights can be obtained from https://
huggingface.co/PixArt-alpha/PixArt-XL-
2-512x512.

Stable Cascade [34]: Stable Cascade is built upon
the Würstchen architecture [34], and trained on im-
ages from a subset of the LAION-5B [41] dataset.

Its pre-trained weights can be obtained from https:
/ / huggingface . co / stabilityai / stable -
cascade.

B.3. Parameter Setting Details
• Experiments conducted on CIFAR10/CIFAR100: We

use the methods in [42] to generate 60,000 images as
CIFAR10-Syn and CIFAR100-Syn for training the suspi-
cious models. Specifically, we generate 20,000 images
each using the techniques of “Class Prompt”, “Multi-
Domain”, and “Random Unconditional Guidance”. Addi-
tionally, the shadow dataset and validation dataset retain
default parameters except for the text prompts and reso-
lution. Focal loss with γ = 2 and α = 0.25. All models
are trained using the AdamW optimizer.

• Experiments conducted on ImageNet-100: We use the
methods in [40] to generate 100,000 images as ImageNet-
100-Syn for training the suspicious models. Specifically,
Specifically, we use “c, dc” to generate these images,
where c is the class name, and dc refers to the definition
of class c provided by WordNet [30]. Guidance scale is
2. Additionally, the shadow dataset and validation dataset
retain default parameters except for the text prompts and
resolution. Focal loss with γ = 2 and α = 0.25. All
models are trained using the AdamW optimizer.

B.4. The Details of Han et al.’s Work
Unlike our setup, the work by Han et al. assumes that the
defender has access to multiple different generative mod-
els to train an attributor. To enable comparison with this
method, we followed this setup when using it. Specifically,
we assume that the defender, in addition to having Gd, also
possesses the other three text-to-image models mentioned
in the paper (whereas in our setup, the defender has only
one text-to-image model, Gd). Using these generative mod-
els, we create four shadow datasets following the same ap-
proach, as well as one validation dataset generated using Gd

in the same manner.
Based on each shadow dataset, we train 16 shadow mod-

els, all of which are ResNet18 with varied training hyper-
parameters. In total, we obtain 64 shadow models. Us-
ing these shadow models, we infer logits on the validation
dataset to train an attributor. The attributor is a two-layer
fully connected network with an input dimension matching
the dimension of the logits and an output dimension of 2.
It classifies logits of shadow models trained on synthetic
data generated by Gd as 1 and others as 0. The attributor is
trained for 10 epochs.

B.5. The Details of Interference Resistance Experi-
ments

Multiple training data sources for Msus. In this experi-
ment, the methods for generating the synthetic dataset and

https://huggingface.co/CompVis/stable-diffusion-v1-4
https://huggingface.co/CompVis/stable-diffusion-v1-4
https://huggingface.co/SimianLuo/LCM_Dreamshaper_v7
https://huggingface.co/SimianLuo/LCM_Dreamshaper_v7
https://huggingface.co/PixArt-alpha/PixArt-XL-2-512x512
https://huggingface.co/PixArt-alpha/PixArt-XL-2-512x512
https://huggingface.co/PixArt-alpha/PixArt-XL-2-512x512
https://huggingface.co/stabilityai/stable-cascade
https://huggingface.co/stabilityai/stable-cascade
https://huggingface.co/stabilityai/stable-cascade


The Suspect’s Data Sources TP FP FN TN Accuracy F1 Score AUROCThe Defender’s Generative Model Gd Data Sources Unrelated to Gd

Stable Diffusion [38] v1.4

Latent Consistency Model

32 32

32 32

0.500 0.286 0.500
PixArt-α 32 32

Stable Cascade 32 32
Real Data 32 32

Latent Consistency Model [28]

Stable Diffusion v1.4

32 32

32 32

0.500 0.286 0.500
PixArt-α 32 32

Stable Cascade 32 32
Real Data 32 32

PixArt-α [4]

Stable Diffusion v1.4

32 32

32 32

0.500 0.286 0.500
Latent Consistency Model 32 32

Stable Cascade 32 32
Real Data 32 32

Stable Cascade [34]

Stable Diffusion v1.4

32 32

32 32

0.500 0.286 0.500
Latent Consistency Model 32 32

PixArt-α 32 32
Real Data 32 32

Average Value 0.500 0.286 0.500
Table A1. The results of random classification on CIFAR10.

training the network follow the settings in Sec. 4.1, with the
only difference being that the training dataset for the suspi-
cious model consists of both the synthetic and real datasets.

Fine-tuning Gd. In this experiment, we fine-tune Gd using
LoRA with a batch size of 16, a learning rate of 1e-4 and a
resolution of 512. The methods for generating dataset and
training network follow the settings in Sec. 4.1.

Fine-tuning Msus. In this experiment, we fine-tune the sus-
picious model with a learning rate of 1e-5, a weight decay
of 1e-4, a batch size of 64, and the cross-entropy loss func-
tion. The methods for generating the synthetic dataset and
training the network follow the settings in Sec. 4.1.

B.6. Hypothesis Testing
We represent the generalization errors of Msdw and Msus

by the sets of accuracies Asdw and Asus for each batch on
the validation dataset. Then we use the Grubbs test to de-
termine whether the mean of Asus is a low-value outlier
of Asdw. The pseudocode is shown in Algorithm 1, where
t1−α

n ,n−2 is the critical value of the t-distribution with de-
grees of freedom n − 2 and significance level α. When
G > G0, we consider mean(Asus) to be a low-value out-
lier of Asdw, meaning the generalization error gap between
two models is significant, and Msus is deemed legitimate.
When G ≤ G0, mean(Asus) falls within the distribution of
Asdw, indicating that the generalization errors of two mod-
els are close, and Msus is deemed illegal.

C. Results on CLIP
We fine-tuned CLIP [35] on ImageNet-100 using hyperpa-
rameters in Sec. 4.1, with ResNet50 and ViT-B. Then We
calculate accuracies of TrainProVe and Han et al.’s work on

Algorithm 1 Grubbs’ Hypothesis Test

1: Input: Asdw, Asus, significance level α = 0.05
2: msdw = mean(Asdw), ssdw = std(Asdw)
3: n = len(Asdw),msus = mean(Asus)

4: G = msdw−msus

ssdw
, G0 = (n−1)√

n

√
(t1−α

n
,n−2)

2

n−2+(t1−α
n

,n−2)
2

5: Output: G > G0

Stable Diffusion v1.4. Finally, the accuracy of TrainProVe
reached 0.75, while Han et al.’s work only achieved 0.56,
meaning that compared to the baseline, TrainProVe can still
be applied to more complex scenarios.

D. More Experimental Results
Here, we present the specific results of different methods on
various datasets (as shown in Tab. 1 of the paper), as shown
in Tab. A1 - Tab. A14.



The Suspect’s Data Sources TP FP FN TN Accuracy F1 Score AUROCThe Defender’s Generative Model Gd Data Sources Unrelated to Gd

Stable Diffusion [38] v1.4

Latent Consistency Model

60 4

0 64

0.756 0.606 0.824
PixArt-α 0 64

Stable Cascade 14 50
Real Data 60 4

Latent Consistency Model [28]

Stable Diffusion v1.4

64 0

4 60

0.969 0.928 0.980
PixArt-α 0 64

Stable Cascade 2 62
Real Data 4 60

PixArt-α [4]

Stable Diffusion v1.4

47 17

0 64

0.919 0.783 0.850
Latent Consistency Model 0 64

Stable Cascade 9 55
Real Data 0 64

Stable Cascade [34]

Stable Diffusion v1.4

0 64

60 4

0.428 0.000 0.268
Latent Consistency Model 53 11

PixArt-α 0 64
Real Data 6 58

Average Value 0.768 0.579 0.731
Table A2. The results of Han et al.’s method on CIFAR10.

The Suspect’s Data Sources TP FP FN TN Accuracy F1 Score AUROCThe Defender’s Generative Model Gd Data Sources Unrelated to Gd

Stable Diffusion [38] v1.4

Latent Consistency Model

64 0

4 60

0.941 0.871 0.963
PixArt-α 4 60

Stable Cascade 7 57
Real Data 4 60

Latent Consistency Model [28]

Stable Diffusion v1.4

22 42

0 64

0.869 0.512 0.672
PixArt-α 0 64

Stable Cascade 0 64
Real Data 0 64

PixArt-α [4]

Stable Diffusion v1.4

64 0

25 39

0.609 0.506 0.756
Latent Consistency Model 32 32

Stable Cascade 64 0
Real Data 4 60

Stable Cascade [34]

Stable Diffusion v1.4

64 0

17 47

0.828 0.699 0.893
Latent Consistency Model 5 59

PixArt-α 19 45
Real Data 14 50

Average Value 0.812 0.647 0.821
Table A3. The results of TrainProVe-Sim on CIFAR10.

The Suspect’s Data Sources TP FP FN TN Accuracy F1 Score AUROCThe Defender’s Generative Model Gd Data Sources Unrelated to Gd

Stable Diffusion [38] v1.4

Latent Consistency Model

57 7

1 63

0.928 0.832 0.914
PixArt-α 0 64

Stable Cascade 11 53
Real Data 4 60

Latent Consistency Model [28]

Stable Diffusion v1.4

60 4

0 64

0.988 0.968 0.969
PixArt-α 0 64

Stable Cascade 0 64
Real Data 0 64

PixArt-α [4]

Stable Diffusion v1.4

64 0

9 55

0.725 0.593 0.828
Latent Consistency Model 22 42

Stable Cascade 54 10
Real Data 3 61

Stable Cascade [34]

Stable Diffusion v1.4

64 0

9 55

0.831 0.703 0.895
Latent Consistency Model 16 48

PixArt-α 23 41
Real Data 6 58

Average Value 0.868 0.774 0.902
Table A4. The results of TrainProVe-Ent on CIFAR10.



The Suspect’s Data Sources TP FP FN TN Accuracy F1 Score AUROCThe Defender’s Generative Model Gd Data Sources Unrelated to Gd

Stable Diffusion [38] v1.4

Latent Consistency Model

32 32

32 32

0.500 0.286 0.500
PixArt-α 32 32

Stable Cascade 32 32
Real Data 32 32

Latent Consistency Model [28]

Stable Diffusion v1.4

32 32

32 32

0.500 0.286 0.500
PixArt-α 32 32

Stable Cascade 32 32
Real Data 32 32

PixArt-α [4]

Stable Diffusion v1.4

32 32

32 32

0.500 0.286 0.500
Latent Consistency Model 32 32

Stable Cascade 32 32
Real Data 32 32

Stable Cascade [34]

Stable Diffusion v1.4

32 32

32 32

0.500 0.286 0.500
Latent Consistency Model 32 32

PixArt-α 32 32
Real Data 32 32

Average Value 0.500 0.286 0.500
Table A5. The results of random classification on CIFAR100.

The Suspect’s Data Sources TP FP FN TN Accuracy F1 Score AUROCThe Defender’s Generative Model Gd Data Sources Unrelated to Gd

Stable Diffusion [38] v1.4

Latent Consistency Model

64 0

0 64

0.772 0.637 0.861
PixArt-α 9 55

Stable Cascade 32 32
Real Data 32 32

Latent Consistency Model [28]

Stable Diffusion v1.4

64 0

0 64

1.000 1.000 1.000
PixArt-α 0 64

Stable Cascade 0 64
Real Data 0 64

PixArt-α [4]

Stable Diffusion v1.4

36 28

0 64

0.791 0.518 0.705
Latent Consistency Model 0 64

Stable Cascade 32 32
Real Data 7 57

Stable Cascade [34]

Stable Diffusion v1.4

4 60

28 36

0.356 0.037 0.246
Latent Consistency Model 64 0

PixArt-α 47 17
Real Data 7 57

Average Value 0.730 0.548 0.703
Table A6. The results of Han et al.’s Method on CIFAR100.

The Suspect’s Data Sources TP FP FN TN Accuracy F1 Score AUROCThe Defender’s Generative Model Gd Data Sources Unrelated to Gd

Stable Diffusion [38] v1.4

Latent Consistency Model

28 36

32 32

0.509 0.263 0.498
PixArt-α 29 35

Stable Cascade 32 32
Real Data 28 36

Latent Consistency Model [28]

Stable Diffusion v1.4

32 32

12 52

0.672 0.379 0.607
PixArt-α 12 52

Stable Cascade 22 42
Real Data 10 54

PixArt-α [4]

Stable Diffusion v1.4

32 32

32 32

0.500 0.286 0.500
Latent Consistency Model 32 32

Stable Cascade 32 32
Real Data 32 32

Stable Cascade [34]

Stable Diffusion v1.4

32 32

16 48

0.619 0.344 0.574
Latent Consistency Model 32 32

PixArt-α 26 38
Real Data 16 48

Average Value 0.575 0.318 0.545
Table A7. The results of TrainProVe-Sim on CIFAR100.



The Suspect’s Data Sources TP FP FN TN Accuracy F1 Score AUROCThe Defender’s Generative Model Gd Data Sources Unrelated to Gd

Stable Diffusion [38] v1.4

Latent Consistency Model

64 0

64 0

0.347 0.380 0.592
PixArt-α 55 9

Stable Cascade 58 6
Real Data 32 32

Latent Consistency Model [28]

Stable Diffusion v1.4

64 0

25 39

0.628 0.518 0.768
PixArt-α 32 32

Stable Cascade 48 16
Real Data 14 50

PixArt-α [4]

Stable Diffusion v1.4

64 0

60 4

0.253 0.349 0.533
Latent Consistency Model 64 0

Stable Cascade 64 0
Real Data 51 13

Stable Cascade [34]

Stable Diffusion v1.4

64 0

41 23

0.363 0.386 0.602
Latent Consistency Model 62 2

PixArt-α 64 0
Real Data 37 27

Average Value 0.398 0.408 0.624
Table A8. The results of TrainProVe-Ent on CIFAR100.

The Suspect’s Data Sources TP FP FN TN Accuracy F1 Score AUROCThe Defender’s Generative Model Gd Data Sources Unrelated to Gd

Stable Diffusion [38] v1.4

Latent Consistency Model

64 0

0 64

0.988 0.970 1.000
PixArt-α 0 64

Stable Cascade 0 64
Real Data 0 64

Latent Consistency Model [28]

Stable Diffusion v1.4

64 0

0 64

1.000 1.000 1.000
PixArt-α 0 64

Stable Cascade 0 64
Real Data 0 64

PixArt-α [4]

Stable Diffusion v1.4

55 9

0 64

0.972 0.924 0.930
Latent Consistency Model 0 64

Stable Cascade 0 64
Real Data 0 64

Stable Cascade [34]

Stable Diffusion v1.4

63 1

0 64

0.997 0.992 0.992
Latent Consistency Model 0 64

PixArt-α 0 64
Real Data 0 64

Average Value 0.992 0.979 0.981
Table A9. The results of TrainProVe on CIFAR100.

The Suspect’s Data Sources TP FP FN TN Accuracy F1 Score AUROCThe Defender’s Generative Model Gd Data Sources Unrelated to Gd

Stable Diffusion [38] v1.4

Latent Consistency Model

32 32

32 32

0.500 0.286 0.500
PixArt-α 32 32

Stable Cascade 32 32
Real Data 32 32

Latent Consistency Model [28]

Stable Diffusion v1.4

32 32

32 32

0.500 0.286 0.500
PixArt-α 32 32

Stable Cascade 32 32
Real Data 32 32

PixArt-α [4]

Stable Diffusion v1.4

32 32

32 32

0.500 0.286 0.500
Latent Consistency Model 32 32

Stable Cascade 32 32
Real Data 32 32

Stable Cascade [34]

Stable Diffusion v1.4

32 32

32 32

0.500 0.286 0.500
Latent Consistency Model 32 32

PixArt-α 32 32
Real Data 32 32

Average Value 0.500 0.286 0.500
Table A10. The results of random classification on ImageNet-100.



The Suspect’s Data Sources TP FP FN TN Accuracy F1 Score AUROCThe Defender’s Generative Model Gd Data Sources Unrelated to Gd

Stable Diffusion [38] v1.4

Latent Consistency Model

32 32

31 33

0.684 0.388 0.615
PixArt-α 0 64

Stable Cascade 6 58
Real Data 32 32

Latent Consistency Model [28]

Stable Diffusion v1.4

26 38

15 49

0.772 0.416 0.635
PixArt-α 6 58

Stable Cascade 1 63
Real Data 13 51

PixArt-α [4]

Stable Diffusion v1.4

64 0

24 40

0.753 0.618 0.846
Latent Consistency Model 3 61

Stable Cascade 32 32
Real Data 20 44

Stable Cascade [34]

Stable Diffusion v1.4

32 32

32 32

0.475 0.276 0.484
Latent Consistency Model 40 24

PixArt-α 32 32
Real Data 32 32

Average Value 0.671 0.425 0.645
Table A11. The results of Han et al.’s Method on ImageNet-100.

The Suspect’s Data Sources TP FP FN TN Accuracy F1 Score AUROCThe Defender’s Generative Model Gd Data Sources Unrelated to Gd

Stable Diffusion [38] v1.4

Latent Consistency Model

32 32

32 32

0.506 0.288 0.504
PixArt-α 30 34

Stable Cascade 32 32
Real Data 32 32

Latent Consistency Model [28]

Stable Diffusion v1.4

28 36

16 48

0.641 0.327 0.564
PixArt-α 16 48

Stable Cascade 26 38
Real Data 21 43

PixArt-α [4]

Stable Diffusion v1.4

32 32

28 36

0.519 0.294 0.512
Latent Consistency Model 32 32

Stable Cascade 32 32
Real Data 30 34

Stable Cascade [34]

Stable Diffusion v1.4

32 32

26 38

0.553 0.309 0.533
Latent Consistency Model 31 33

PixArt-α 28 36
Real Data 26 38

Average Value 0.555 0.305 0.528
Table A12. The results of TrainProVe-Sim on ImageNet-100.

The Suspect’s Data Sources TP FP FN TN Accuracy F1 Score AUROCThe Defender’s Generative Model Gd Data Sources Unrelated to Gd

Stable Diffusion [38] v1.4

Latent Consistency Model

64 0

53 11

0.266 0.353 0.541
PixArt-α 60 4

Stable Cascade 62 2
Real Data 60 4

Latent Consistency Model [28]

Stable Diffusion v1.4

51 13

41 23

0.441 0.363 0.574
PixArt-α 48 16

Stable Cascade 37 27
Real Data 40 24

PixArt-α [4]

Stable Diffusion v1.4

60 4

56 8

0.338 0.361 0.563
Latent Consistency Model 41 23

Stable Cascade 59 5
Real Data 52 12

Stable Cascade [34]

Stable Diffusion v1.4

60 4

53 11

0.381 0.377 0.590
Latent Consistency Model 36 28

PixArt-α 53 11
Real Data 52 12

Average Value 0.356 0.364 0.567
Table A13. The results of TrainProVe-Ent on ImageNet-100.



The Suspect’s Data Sources TP FP FN TN Accuracy F1 Score AUROCThe Defender’s Generative Model Gd Data Sources Unrelated to Gd

Stable Diffusion [38] v1.4

Latent Consistency Model

64 0

0 64

0.819 0.688 0.887
PixArt-α 0 64

Stable Cascade 11 53
Real Data 47 17

Latent Consistency Model [28]

Stable Diffusion v1.4

2 62

0 64

0.806 0.061 0.517
PixArt-α 0 64

Stable Cascade 0 64
Real Data 0 64

PixArt-α [4]

Stable Diffusion v1.4

64 0

29 35

0.734 0.601 0.834
Latent Consistency Model 0 64

Stable Cascade 24 40
Real Data 32 32

Stable Cascade [34]

Stable Diffusion v1.4

59 5

32 32

0.784 0.631 0.836
Latent Consistency Model 0 64

PixArt-α 0 64
Real Data 32 32

Average Value 0.786 0.495 0.769
Table A14. The results of TrainProVe on ImageNet-100.
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