
Appendix

A. Vid2Sim dataset

Our Vid2Sim dataset includes 30 high-quality real-to-sim
simulation environments. These environments are recon-
structed from video clips sourced from 9 web videos
recorded by individuals walking along streets with a single
hand-held camera. Each clip capture includes 15 seconds
of forward-facing video recorded at 30 fps, providing 450
frames per scene for reconstruction. To ensure privacy, we
mask all human faces and identifiable information in the
video frames.

A.1. Camera Reconstruction

Commonly used Structure-from-Motion (SfM) methods,
such as COLMAP [47], often fail to reconstruct accurate
camera poses from in-the-wild videos due to significant
variations in viewpoints and lighting conditions. Instead,
we employ GLOMAP [42], an advanced general-purpose
SfM system that is more robust and efficient than COLMAP,
to obtain accurate camera poses. We further compared its
results with other learning-based methods [27, 57] in Tab. 4
to show its reliability.

A.2. Scene Statistics

We analyze our Vid2Sim dataset to demonstrate its diver-
sity and statistics. The collected 30 videos contain diverse
types of urban spaces (plazas: 5, sidewalks: 13, parks: 3,
crosswalks: 3, residential streets: 6), diverse weather and
lightning conditions (sunny: 20, cloudy: 7, rainy: 2, indoor
lightning: 1), and diverse locations around the world (U.S.:
4, U.K.: 3, Finland: 20, Lithuania: 3). Our Vid2Sim dataset
was designed to highlight the potential for training and eval-
uating the mobile robot in diverse real-world environments.

In Fig. 8, We show a preview snap-shot of the 30 diverse
environments in our dataset, these environments encompass
a variety of urban navigation scenarios designed for more
robust and generalizable navigation policy training in com-
plex urban environments.

B. Geometry-Consistent Reconstruction

B.1. Implementation details

In this section, we mainly introduce the implementation
details of our geometry-consistent reconstruction method,
including training strategy, hyper-parameter settings, and
other extra details.

To avoid the influence of dynamic objects within the
original videos, for each frame, we generate a dynamic
mask to mask out all the moving objects within the scene
with an off-the-shelf video-based tracker DEVA [10]. We

Methods RPE (Translation) ↓ RPE (Rotation) ↓
DUSt3R [57] 1.632 1.357
MASt3R [27] 1.622 1.160
COLMAP [47] ✗ (Failed) ✗ (Failed)

Ours (GLOMAP† [42]) 1.611 1.057

Table 4. SfM evaluation on SiT [2] dataset. We report the relative
pose error of the translation and rotation on 5 video sequences of
street scenes with daily dynamic objects. Each sequence consists
of a total of 200 frames. † indicates dynamic masks are applied

train our model for 30k iterations. We use the same train-
ing hyper-parameters as 3DGS [25] and adopt the densifica-
tion strategy from AbsGS [69]. All the depth, normal, and
geometry-consistency loss are started to apply at the 500
iterations still the end of the training.

For the mesh extraction, we first render the depth map
from each frame and fuse them into a TSDF field with
KinectFusion [21], the mesh is then extracted from TSDF
field with voxel size set to 0.1. To eliminate the poten-
tial dynamics issue caused by uneven ground reconstruc-
tions, we further remove the ground plane of the scene in
our mesh extraction through ground plane segmentation.
We found that directly applying a general segmentation
model (such as SAM [26] or SAM-HQ [24]) cannot re-
move all the ground mesh due to inaccurate segmentation
and prompt ambiguity. Instead, we propose to generate a
detailed ground mask Mi by using the ground plane’s nor-
mal direction as a prior:

Mi = ∥ arccos(Ni · n̄
′

i) < δ∥, (8)

where Ni indicates the rendered normal map of the
ith frame, n̄

′

i denotes the mean normal direction of the
ground surface computed from the ground segmentation
mask given by the SAM-HQ [24] model and δ denotes
the angle threshold. Pixels whose normal directions are
within δ degrees of the mean ground surface normal di-
rection are grouped together to generate the final ground
mask.Incorporating normal priors results in a more precise
ground mask, enabling clean mesh extraction without the
ground surface. We set δ = 15 degrees in our implementa-
tion.

B.2. Screen-space covariance culling

In this section, we systematically evaluate our screen-space
covariance culling method both qualitatively and quantita-
tively. Results demonstrate this technique could effectively
remove rendering artifacts and significantly improve agent
observation quality.

Since floater artifacts often appear when the viewing an-
gles and focal length differ significantly from the training



Figure 8. Vid2Sim Dataset Preview

(a) Before 2D Covariance Culling (b) After 2D Covariance Culling

Figure 9. Screen-space Covariance Culling Comparison

view. Therefore, standard test views that closely align with
the training view may not accurately represent real situa-
tions during agent training. For better evaluation, we sim-
ulate the agent’s camera view by adjusting the test view’s
camera focal down by 1.5x and shifting the camera down
by 1 unit. Given the fact that there is no ground-truth image
available to apply common NVS evaluation metrics (e.g.
PSNR and SSIM) to evaluate the quality of the culled im-
ages, we instead provide a quantitative evaluation of screen-
space covariance culling by computing the Fréchet Incep-
tion Distance (FID) [18] score between the training views
and the agent’s rendered observations. The qualitative re-
sults show a substantial 10.7% improvement in the FID
score after our screen-space covariance culling, which sup-
ports its effectiveness.

It is important to note that, due to the limited size of
the evaluation dataset and the significant difference between
the agent’s views and the training views, the absolute FID
values cannot be directly compared to those commonly re-
ported in generative models evaluation [19, 49]. Instead, the
FID score in this context serves as a relative metric for us to
better understand the improvements achieved through this
covariance culling process.

Metric w/o Culling w Culling Improvement (%)

FID [18] 214.47 191.54 +10.70%

Table 5. Comparison of FID scores for rendered images with and
without 2D covariance culling.

C. Simulation Environment Setup

Our simulation environment is built based on the Unity [17]
physics engine. Our agents, hybrid scene representation,
and static and dynamic obstacles are imported together to
form our diverse simulation environments. The ground sur-
face is configured as a horizontal walkable area, while other
scene meshes and obstacles are tagged as collidable ob-
jects. To maintain visual consistency, the ground and scene
meshes are rendered invisible and serve only for collision
interactions.

For the agent settings, we position the agent’s camera
sensors at the front of the robot, matching the real-world
sensor placement. The robot size in the simulation is scaled
to metric scale with the background scene adjusted pro-
portionally. The agent operates using a bicycle dynamics
model, configured with a wheelbase of 0.8 meters and a
maximum turning angle of 30 degrees. We introduce ran-
dom perturbations to the camera’s position and rotation to
simulate real-world disturbances caused by uneven ground
during navigation.

In Fig. 10, We also provide an example of a digital twin
environment created using our Vid2Sim pipeline that trans-
forms a real-world environment into a simulation environ-
ment with the minimal sim-to-real gap. The agent RGB ob-



servation is provided at the top-left corner which replicates
real-world observation.

(a) Vid2Sim Simulation (b) Real-world Deployment

Figure 10. Digital-twin environment for real-world scene

D. RL Training Details
In this section, we provide the training details of our RL
agents. To enable agent training with popular RL frame-
works like OpenAI Gym [7] and Stable-Baselines3 [44], we
compiled our Unity environments and integrated them with
an environment wrapper to make them compatible with the
OpenAI Gym interface. The simulation system is running
at 50hz and the RL training is running at 5hz.

During each episode, the agents are randomly initialized
from a starting point and need to navigate to another random
goal point within the scene. Typically, the distance between
the starting point and the goal point is around 10∼30m. For
both the PointNav and SocialNav tasks, an agent is consid-
ered successful if it reaches the goal within 0.5m.

D.1. Reward shaping

Our reward function for the agent is defined as follows:

R = Rterm + c1Rdist + c2Rsteer + c3Rcrash + c4Rtime

• Terminal reward Rterm: is a sparse reward set to +10 if
the agent successfully reaches the destination and −10 if
it fails.

• Distance reward Rdist: is a dense reward defined as
Rdist = dt − dt−1, where dt represents the current dis-
tance between the agent to the goal point, which guide
agent navigates towards the goal during training. We set
the weight c1 = 1.

• Steering smoothness reward Rsteer: is a regularization
reward defined as Rsteer = −∥st − st−1∥ · vt to penal-
ize inconsistent steer movement during agent navigation.
The weight c2 is set to 0.05

• Crash reward Rcrash is used to penalize the collision be-
tween the agent and other objects, including the environ-
ment, static obstacles, and dynamic agents. It’s a dense
negative reward defined as −1(ct) where ct denotes the
collision happens at time t and 1(·) is the indicator func-
tion. We set the weight of Rcrash as c3 = 1.0.

• Time reward Rtime is a dense reward defined as Rtime =
−∆t, between two time steps the Rtime is simplifies to
−1 to encourage efficient navigation by penalizing longer
episodes. We set the weight c4 of Rtime to −0.1

At any time step t if the Rterm ̸= 0, the episode will ter-
minate. The agent is considered as failed and receives a
Rterm = −10 under the following conditions: 1) Navigat-
ing outside the drivable area. 2) Exceeding 3000 time steps
in the episode, resulting in a timeout. 3) Accumulating more
than 3 collisions within an episode. During the testing, any
collision between the agent and other objects will result in
a cost +1.

D.2. Hyper-parameter settings

We train our agent with 30 parallel environments and the
training takes around 15 hours on a single NVIDIA A5000
GPU. We provide our hyper-parameter settings in Tab. 6

SAC Hyper-parameters Value
Learning starts 10000
τ (Target critic update ratio) 0.005
Discount factor γ 0.99
SDE sample frequency 64
Batch size 256
Learning rate 3× 10−4

Use SDE at warmup True
Use SDE True

Table 6. SAC Hyper-parameters used in experiments.

E. Sim-to-real Deployment
For the real-world experiment, we deploy navigation poli-
cies trained in Vid2Sim on the same four-wheeled delivery
robot used in the simulation. The robot takes RGB images
as inputs directly from an onboard camera, which has the
same resolution of 1280×720 and the same intrinsic and ex-
trinsic parameters as the sensor specifications in simulation.
We resize the current image to 128×72 and stack it with the
images from the past 5 timesteps to incorporate the histor-
ical information. We then combine the image inputs and
the distance and heading angle to the goal point from robot
odometry as the policy observation. The action output in-
cludes the normalized linear and angular velocities between
-1 and 1, and we perform system identification to align the
dynamics of the real robot with the simulation by re-scaling
the normalized velocities in real-world units, and we use the
built-in controller of the robot to convert the velocity com-
mands to the low-level motor controls for actions.

F. Particle Simulation for Weather Editing
Apart from global scene layout editing illustrated in the
main paper, we also demonstrate our ability to simulate
different weather conditions like rainy and foggy weather
through 3D particle simulations within the Unity environ-
ments in Fig. 11



G. Limitations and Future works
Though the proposed Vid2Sim framework can support ef-
ficient training in simulation environments with fast GS-
based rendering and can achieve zero-shot sim2real de-
ployment, building each simulation environment is time-
consuming as GS requires GLOMAP [42] to initialize the
point cloud and the camera poses, which takes a long time
to run. Therefore, we have only collected 30 environments
and experiment results have shown training with more en-
vironments can lead to better performance. In the future,
we will explore more efficient ways to convert the monocu-
lar videos to GS-based simulation environments and build a
larger real2sim dataset with more diverse environments. We
believe such large-scale environments can further benefit
the training of a generalizable navigation policy and extend
our pipeline to train other embodiments like humanoids and
robot dogs.



Rain Simulation Fog Simulation
Figure 11. Weather simulation with particle systems in Unity

Figure 12. Extending Vid2Sim to quadruped robot Go2 in Isaac-Sim



3DGS 2DGS OursVideo2Game

Figure 13. Reconstruction Comparison between different methods on RGB, depth map and normal map


	. Introduction
	. Related Work
	. Preliminary: 3D Gaussian Splatting
	. Vid2Sim Framework
	. Geometry-Consistent Scene Reconstruction
	. Realistic and Interactive Simulation
	. Experiments
	. Reconstruction Evaluation
	. Urban Navigation Training
	. Sim-to-Real Deployment
	. Extending Vid2Sim to Other Robots

	. Conclusion


	. Vid2Sim dataset
	. Camera Reconstruction
	. Scene Statistics


	. Geometry-Consistent Reconstruction
	. Implementation details
	. Screen-space covariance culling

	. Simulation Environment Setup
	. RL Training Details
	. Reward shaping
	. Hyper-parameter settings
	. Sim-to-real Deployment
	. Particle Simulation for Weather Editing
	. Limitations and Future works



