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1. Tasks and Datasets
We verify the effectiveness of pFLMoE on 5 non-IID tasks.
Here, we provide additional details about the tasks and the
datasets used.

A. Medical image classification (different resolution).
We use the Breast Cancer Histopathological Image Database
(BreaKHis) [17]. We treat the original image as a high-
resolution image. Then, the Bicubic downsampling method
is used to downsample the high-resolution image, obtaining
images with resolutions of x2↓, x4↓, and x8↓, respectively.
Each resolution of medical images was treated as a separate
client, resulting in four clients in total. Each client has the
same number of images with consistent label distribution, but
the image resolution is different for each client. The dataset
for each client was randomly divided into training and testing
sets at a ratio of 7:3, following previous work. In this task, we
employed a family of models such as ResNet{17, 11, 8, 5}.

B. Medical image super-resolution. We use BreaKHis
dataset [17]. We perform x2↓, x4↓, and x8↓ Bicubic down-
sampling methods on the high-resolution images [19]. Each
downsampled resolution of medical images is treated as a
client, resulting in three clients in total. The dataset for
each client was randomly divided into training and testing
sets at a ratio of 7:3, following previous work. We used
the RCNN [4] for the model heterogeneous framework. We
used SRResNet{6, 12, 18} [11] for the model heterogeneous
framework.

C. Medical time-series classification. We used the Sleep-
EDF dataset [5] for the classification task of time series under
Non-IID distribution. We divided the Sleep-EDF dataset
evenly among three clients. The ratio of the training set
to the testing set for each client is 8:2. We designed three
clients using the TCN [1], Transformer [23] and RNN [20].
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D. Medical image classification (different label dis-
tributions). This task includes a breast cancer classifica-
tion task and an OCT disease classification task. We de-
signed eight clients, each corresponding to a distinct hetero-
geneous model. These models included ResNet [6], Shuf-
fleNetV2 [13], ResNeXt [21], SqueezeNet [9], SENet [7],
MobileNetV2 [15], DenseNet [8], and VGG [16]. Similar
to the previous approach, we applied non-IID label distribu-
tion methods to the BreaKHis (breast cancer classification)
[10] and ODIR-5K (ocular disease recognition) across the 8
clients.

For the breast cancer classification task, we have filled in
the data quantity to 8000 and allocated 1000 pieces of data
to each client. The ratio of training set to testing set for each
client is 8:2.

For theocular disease recognition task, we randomly se-
lected 6400 pieces of data, with 800 pieces per client. The
ratio of training set to test set is also 8:2.

E. Medical image segmentation. Here, we focus on
polyp segmentation [3]. The dataset for this task consisted
of endoscopic images collected and annotated from four dif-
ferent centers, with each center’s dataset treated as a separate
client. Thus, there were four clients in total for this task. The
number of each client are 1000, 380, 196 and 612. The ratio
of the training set to the testing set for each client is 1:1.
Each client utilized a specific model, including Unet++ [24],
FCN [12], Unet [14], and Res-Unet [2].

2. Implementation Details
For different tasks, pFLMoE adopts different learning rates
of two-stage and batch size. The specific settings are shown
in Tab. 1. In experiments, all frameworks have a communi-
cation round of 100. For classification, Lloc and LMoE are
cross-entropy loss. For super-resolution tasks, Lloc and LMoE

are L1 loss. And for segmentation tasks, Lloc and LMoE

are Dice and cross-entropy loss. λloc and λMoE are set to
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0.5. The performance evaluation of the classification task is
based on two metrics, accuracy (ACC) and macro-averaged
F1-score (MF1), providing a comprehensive assessment of
the model’s robustness. For super-resolution, we adopted the
Peak-Signal to Noise Ratio (PSNR) and structural similarity
index (SSIM) to evaluate the performance. Additionally,
Dice is used to evaluate the segmentation task performance
across frameworks.

3. Baselines
In the medical image classification task (different resolution),
we selected FedAvg, SCAFFOLD, FedProx, FedRep, LG-
FedAvg, APFL, and Ditto with homogeneous models. We
chose MH-pFLID, FedMD, FedDF, pFedDF, DS-pFL, and
KT-pFL for heterogeneous model federated learning.

For medical image super-resolution, we compared various
approaches, including local training of clients and a variety
of personalized federated learning techniques, as well as
methods for learning a single global model. Among the
personalized methods, we also chose FedRep, LG-FedAvg,
APFL, and Ditto. We also compare MH-pFLID with our
method (pFLMoE) under the heterogeneous model setting.

The baseline used in the medical time-series classification
task is the same as the medical image classification task
(different label distrbutions).

For image segmentation tasks, we compared various ap-
proaches, including local training of clients and a variety
of personalized federated learning techniques, as well as
methods for learning a single global model. Among the
personalized methods, we also chose FedRep, LG-FedAvg,
APFL, and Ditto. We simultaneously added LC-Fed [18] and
FedSM [22] which are effective improvements for FedRep
and APFL in the federated segmentation domain. We also
compare MH-pFLID with our method (pFLMoE) under the
heterogeneous model setting.

In the medical image classification task (different la-
bel distrbutions), we compared various methods, includ-
ing local training of clients with heterogeneous models
and existing heterogeneous model federated learning ap-
proaches (FedMD, FedDF, pFedDF, DS-pFL, and KT-pFL,
MH-pFLID).

4. Training Settings
4.1. Evaluation Indicators

The performance evaluation of the classification task is
based on two metrics, accuracy (ACC) and macro-averaged
F1-score (MF1), providing a comprehensive assessment of
the model’s robustness. For the super-resolution task, we
adopted the Peak Signal-to-Noise Ratio (PSNR) and struc-
tural similarity index (SSIM) to evaluate the performance.
Additionally, Dice is used to evaluate the segmentation task
performance across frameworks.

A. Accuracy. Accuracy is the ratio of the number of
correct judgments to the total number of judgments.

B. Macro-averaged F1-score. First, calculate the F1-
score for each recognition category, and then calculate the
overall average value.

C. Peak Signal-to-Noise Ratio. The formula for Peak
Signal-to-Noise Ratio (PSNR) is typically written as:

PSNR = 10 ∗ log10(
R2

MSE
), (1)

where R is the maximum possible pixel value in the image
(for example, for an 8-bit image, R=255). MSE is the Mean
Squared Error, calculated as:

MSE =
1

N

N∑
i=1

(I(i)−K(i))2, (2)

where I(i) and K(i) are the pixel values of the original
image and the reconstructed image at position i, and N is
the total number of pixels in the image.

D. Structural similarity index (SSIM). First, calculate
the F1-score for each recognition category, and then calculate
the overall average value.

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, (3)

where x and y are the two images being compared, µx and
µy are the average luminance of x and y. σ2

x and σ2
y are the

variances of x and y. σxy is the covariance between x and
y. C1 and C2 are small constants to stabilize the division
(typically C1 = (K1L)

2 and C2 = (K2L)
2, where L is the

dynamic range of the pixel values).
E. Dice. It is a set similarity metric commonly used to

calculate the similarity between two samples, with a thresh-
old of [0,1]. In medical images, it is often used for image
segmentation, with the best segmentation result being 1 and
the worst result being 0. The Dice coefficient calculation
formula is as follows:

Dice =
2 ∗ (pred ∩ true)

pred ∪ true
(4)

Among them, pred is the set of predicted values, true
is the set of groudtruth values. And the numerator is the
intersection between pred and true. Multiplying by 2 is due
to the repeated calculation of common elements between
pred and true in the denominator. The denominator is the
union of pred and true.

4.2. Loss Function

Many loss functions have been applied in this article, and
here are some explanations for them.The cross entropy loss
function is very common and will not be explained in detail
here. We mainly explain Dice loss.

Dice Loss applied in the field of image segmentation. It
is represented as:



Table 1. The two-stage learning rates and batch size of pFLMoE under 5 tasks.

Medical image classification
(different resolution)

Medical image
super-resolution

Medical time-series
classification

Medical image classification
(different label distributions)

Medical image
segmentation

Learning rate of Local
Network Training 0.0005 0.0001 0.001 0.001 0.001

Learning rate of Mixture
of Experts Decision 0.0001 0.00001 0.0001 0.0001 0.0001

Batch size 32 16 256 8 8

DiceLoss = 1− 2 ∗ (pred ∩ true)

pred ∪ true
(5)

The Dice loss and Dice coefficient are the same thing,
and their relationship is:

DiceLoss = 1−Dice (6)

In super-resolution task, we use L1 loss to optimize the
model.

4.3. Public Datasets for other Federated Learning
of Heterogeneous Models

In this section, we mainly describe the setting of public
datasets for methods such as FedMD, FedDF, DS-pFL and
KT-pFL.

A. Medical image classification (different resolution).
We select 100 pieces of data from each client and put them
into the central server as public data, totaling 400 pieces of
data as public data. In order to better obtain soft predictions
for individual clients, the image resolution of the publicly
available dataset will be resized to the corresponding resolu-
tion for each client.

B. Medical image classification (different label distri-
butions). For the breast cancer classification task, we select
50 pieces of data for each client to upload, and the public
dataset contains 400 images. For the Ocular Disease Recog-
nition task, we also select 50 pieces of data for each client to
upload, and the public dataset contains 400 images.

C. Medical time-series classification. We select 200
pieces of data for each client to upload, and the public dataset
contains 600 images.
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