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7. Analysis of τ
In the paper, we define a stochastic variable τ (Eq. (4)). In
this section, we provide more results of τ and theoretical
analyses. We report the values of τ for 16 datasets in Fig. 6.
As can be seen from Fig. 6, when the random noise added
onto the image is small, the resultant L2 drift of the adver-
sarial images in the embedding space is unusually small,
indicating that they are trapped in their toxic local sur-
roundings induced by the adversaries that seek to maximise
the classification loss of CLIP. This behaviour is termed as
‘false stability’ in the main paper. When the strength of
the random noise is sufficiently large, the L2 drift of ad-
versarial images is disproportionately enlarged. In contrast,
the values of τ increase more steadily for clean images, as
the noise strength ϵrandom increases, without showing dis-
proportionate changes. Below we theoretically analyse the
behaviour of ‘false stability’ of adversarial images.

7.1. Theoretical Analysis
Given a pre-trained vision encoder fθ, a natural
(unattacked) image x ∈ RC×W×H , and an adversarial im-
age x′ that is manipulated to maximise the classification
loss of CLIP:

x′ = argmax
xs

L(fθ(xs), tc), s.t. ∥xs − x∥∞ ≤ ϵ (7)

the resultant embedding fθ(x + n) when a small random
noise n ∈ RC×W×H ∼ U(−ϵrandom, ϵrandom) is imposed
can be written as the Taylor expansion of f at x:

fθ(x+n) = fθ(x)+Jf (x) ·n+
1

2
nT ·Hf (x) ·n+ · · · (8)

where Jf (x) and Hf (x) are the Jacobian matrix and Hes-
sian matrices of f at x, respectively, assuming that f is
smooth around x. Provided that the random noise n is small,
the above embedding can be approximated by the first-order
expansion:

fθ(x+ n) ≈ fθ(x) + Jf (x) · n (9)

Therefore, the L2 drift induced by n can be written as:

∥ fθ(x+ n)− fθ(x) ∥ ≈∥ Jf (x) · n ∥

=

 d∑
j=1

(
N∑
i=1

∂fj
∂xi

ni

)2
 1

2 (10)

where d is the latent space dimensionality of CLIP, and N =
C ×W ×H is the pixel space dimensionality.

When Eq. (7) is computed by gradient-based methods
such as PGD [6], x′ is obtained through gradient ascent in
the direction that increases the classification loss L:

∂

∂x
L(fθ(x), tc) =

∂L

∂f
· ∂f
∂x

=
∂L

∂f
· Jf (x) (11)

As such, the approximation of Eq. (7) can be seen as con-
stantly searching the pixel space for the trajectory starting
from x that causes the steepest ascent of L, i.e., the strongest
activation of Jf (x), within a limited number of steps. Since
x′ is the approximation result of Eq. (7), it lies in the tra-
jectory where Jf (x) is the most activated, and is there-
fore insensitive to a random noise n, which is statistically
isotropic in the pixel space with a tiny component that lies
in the direction of ∂L

∂f · Jf (x)|x=x′ . In contrast, a clean
image x without being manipulated based on Jf (x) does
not show unusually strong activations in any direction, and
can be more activated by an isotropic noise n. Therefore,
∥Jf (x) ·n∥ > ∥Jf (x′) ·n∥ holds when n is a small random
noise in the pixel space, rendering the adversarial image x′

‘falsely stable’.

8. More Results on Adversarial Robustness

In this section, we provide more complete results on adver-
sarial robustness.

8.1. Robustness under CW attacks

Following previous studies [32, 50], we further test adver-
sarial robustness of our test-time counterattack paradigm
under CW attack [6], with the attack budget at ϵa = 1/255.
Tab. 4 reports the full table of results. It can be seen that
for CW attacks, our TTC paradigm can still achieve stable
robustness gains across 16 datasets. RN and TTE do not
degrade accuracy on clean images since they do not counter
the potential adversary by perturbing test images. Similarly
to when tested under PGD attacks, TTE does not provide
stable robustness. Compared to Anti-adversary and HD,
which optimise a perturbation based on some objective, our
TTC retains the best clean accuracy while significantly im-
proving robustness. This shows that our paradigm can also
be employed in test time to defend CLIP against other attack
methods that maximise the classification loss of CLIP.



(a) Caltech101 (b) Caltech256 (c) CIFAR10 (d) CIFAR100 (e) Country211 (f) DTD

(g) EuroSAT (h) FGVCAircraft (i) Flowers102 (j) Food101 (k) ImageNet (l) OxfordPets

(m) PCAM (n) StanfordCars (o) STL10 (p) SUN397

Figure 6. Values of τ on clean and adversarial images (ϵa = 1/255) across 16 datasets. For each dataset, we randomly sample 100 images
and report the average values.

8.2. Robustness under ϵa = 4/255

Tab. 5 reports the full table of robustness under 10-step PGD
attack with the attack budget being ϵa = 4/255. It can
be seen that TTC achieves consistent and stable robustness
gains across 16 datasets. Anti-adversary [1] and HD [52]
bring little to no robustness under a high attack strength
at ϵa = 4/255. RN and TTE [38] perform best in terms
of accuracy on clean images, which is understandable be-
cause they do not optimise any perturbation to counter the
adversary. RN does not provide any robustness, showing
that an additive random noise in the pixel space as large as
the attack budget is not able to counteract the false stabil-
ity of adversarial images. TTE [38] improves robustness of
CLIP against PGD attacks with a high strength ϵa = 4/255
to some extent. However, the robustness gain is unstable,
as indicated by the high standard deviation of robust accu-
racy across different runs. For TTC, the number of steps
N is increased to 5 for more effective counterattacks in this
setting, which reduces the average clean accuracy by 5.52,
compared to the original CLIP model. This trade-off is still
reasonable given the consistent robustness gains.

9. Trade-off between Clean Accuracy and Ro-
bustness

Although we show that performing counterattacks at test
time brings stable robustness gains, there is a reduction in
clean accuracy, as can be seen in Tab. 1 and Tab. 5. Pre-
vious studies extensive analyse the trade-off between accu-
racy and robustness. TRADES [58] theoretically analyse
such trade-off and propose to control it with a hyperparam-
eter. In this work, the user-defined hyperparameter τthres
adjusts the trade-off by determining whether a test image
is ‘falsely stable’ or not, with a higher value benefiting ro-
bustness at a cost of clean accuracy. In our experiments, the
reduction in clean accuracy is larger on some datasets such
as ImageNet than others. This can be attributed to the differ-
ent τ behaviour of clean images on various datasets. From
Fig. 6, it can be seen that clean images of ImageNet exhibit
lower values of τ when a random noise at the strength of
4/255 is imposed. This causes more clean images of Im-
ageNet to be considered as ‘falsely stable’ when the same
τthres of 0.2 is employed, subjecting them to unnecessary
counterattacking. In the future, we aim to further mitigate
such trade-off by adaptively configuring τthres for down-
stream data distributions.



(%) CLIP Adversarial Finetuning Test-time Defence
∆CLIP-FT TeCoA PMG-AFT FARE RN TTE Anti-adv HD TTC (ours)

TinyImageNet Rob. 0.36 1.06 48.00 43.79 27.71 0.57±0.02 19.40±4.08 5.48±0.05 3.70±0.12 19.75±0.38 +19.39
Acc. 57.64 77.06 70.86 66.85 73.63 51.85±0.04 56.73±0.22 52.76±0.16 52.49±0.12 51.85±0.04 -5.79

CIFAR10 Rob. 0.87 0.94 33.27 39.50 20.6 2.05±0.05 40.01±6.25 12.53±0.01 14.79±0.10 29.04±0.02 +28.17
Acc. 85.12 84.90 64.61 70.69 74.44 81.18±0.07 84.74±0.40 83.52±0.09 78.64±0.02 81.18±0.07 -3.94

CIFAR100 Rob. 0.29 0.39 18.27 20.83 11.67 0.63±0.06 18.73±3.87 6.56±0.23 3.04±0.04 14.38±0.23 +14.09
Acc. 57.14 59.51 35.96 40.32 46.67 56.34±0.20 58.61±0.25 53.95±0.15 53.50±0.02 56.34±0.20 -0.80

STL10 Rob. 12.23 9.95 69.73 72.39 59.60 17.20±0.15 78.64±3.91 38.66±0.17 37.73±0.22 76.40±0.16 +64.17
Acc. 96.40 94.49 87.40 88.56 91.72 95.85±0.04 96.26±0.04 95.45±0.08 89.54±0.05 95.85±0.04 -0.55

ImageNet Rob. 1.46 1.27 18.28 19.42 27.71 2.21±0.00 29.77±4.19 9.37±0.05 7.46±0.05 36.01±0.15 +34.55
Acc. 59.69 54.24 34.89 36.12 48.79 59.34±0.06 60.02±0.13 54.27±0.14 55.06±0.05 49.39±0.00 -10.30

Caltech101 Rob. 20.88 15.95 56.23 61.58 54.86 25.89±0.11 69.44±3.09 41.47±0.02 36.26±0.08 66.17±0.31 +45.29
Acc. 85.66 83.63 71.68 75.45 80.95 86.61±0.10 85.84±0.09 84.02±0.10 83.00±0.07 86.53±0.07 +0.87

Caltech256 Rob. 9.69 7.24 42.63 44.55 39.58 13.11±0.05 59.81±3.97 27.17±0.07 24.54±0.09 58.79±0.07 +49.10
Acc. 81.72 78.53 61.14 62.24 73.32 81.25±0.03 82.48±0.08 79.38±0.12 79.38±0.05 79.66±0.04 -2.06

OxfordPets Rob. 1.64 1.14 37.91 39.28 33.85 3.11±0.04 51.12±6.98 22.99±0.52 13.84±0.27 57.15±0.61 +55.51
Acc. 87.44 84.14 62.12 65.88 79.37 87.41±0.12 88.13±0.13 80.62±0.35 80.64±0.15 83.35±0.21 -4.09

Flowers102 Rob. 1.35 0.80 21.13 21.34 17.25 2.13±0.06 34.97±4.25 8.06±0.07 8.51±0.04 36.84±0.13 +35.49
Acc. 65.46 53.37 36.80 37.00 47.98 64.62±0.19 65.20±0.23 62.66±0.14 57.79±0.08 64.16±0.19 -1.30

FGVCAircraft Rob. 0.00 0.00 2.25 1.86 1.35 0.00±0.00 5.15±1.25 0.83±0.11 0.97±0.06 12.41±0.32 +12.41
Acc. 20.10 14.04 5.31 5.55 10.86 19.25±0.18 20.18±0.35 15.88±0.23 16.18±0.21 18.00±0.16 -2.10

StanfordCars Rob. 2.38 2.04 8.74 10.53 9.14 2.44±0.02 21.19±3.41 4.76±0.18 5.11±0.05 30.38±0.12 +28.00
Acc. 52.02 42.11 20.91 25.44 38.68 52.14±0.09 52.73±0.31 36.21±0.27 43.60±0.05 48.16±0.16 -3.86

SUN397 Rob. 1.75 1.48 18.36 20.39 15.73 2.48±0.03 29.37±4.05 8.85±0.01 7.90±0.03 39.44±0.07 +37.69
Acc. 58.50 55.73 36.69 37.98 52.42 59.69±0.06 59.12±0.08 56.00±0.04 54.07±0.01 55.13±0.06 -3.37

Country211 Rob. 0.08 0.05 1.46 1.74 0.92 0.15±0.02 3.00±0.74 0.72±0.05 0.75±0.02 6.17±0.11 +6.09
Acc. 15.25 12.07 4.75 4.64 9.26 14.80±0.02 14.66±0.14 11.58±0.12 11.98±0.02 13.08±0.05 -2.17

Food101 Rob. 1.09 0.55 12.87 16.57 12.93 1.92±0.04 44.61±6.42 15.03±0.11 9.77±0.06 54.65±0.13 +53.56
Acc. 83.88 64.86 29.98 36.61 55.31 83.44±0.04 83.96±0.01 75.81±0.22 81.02±0.05 82.18±0.02 -1.70

EuroSAT Rob. 0.03 0.03 11.66 11.94 10.66 0.16±0.00 6.44±1.74 2.57±0.08 3.47±0.17 12.69±0.07 +12.66
Acc. 42.59 27.64 16.58 18.53 21.88 53.24±0.09 44.38±1.62 36.78±0.18 40.12±0.13 53.24±0.09 +10.65

DTD Rob. 2.87 2.77 16.28 13.72 14.36 3.46±0.04 22.62±2.06 6.06±0.04 10.11±0.16 27.39±1.07 +24.52
Acc. 40.64 36.49 25.16 21.76 32.07 37.96±0.13 41.35±0.29 38.92±0.22 35.25±0.22 36.98±0.21 -3.66

PCAM Rob. 0.10 1.10 48.29 46.36 16.41 0.44±0.02 10.70±3.25 5.07±0.02 46.92±0.10 52.86±0.06 +52.76
Acc. 52.02 47.21 49.96 50.03 52.54 52.73±0.07 50.92±0.04 52.49±0.02 50.35±0.01 52.73±0.07 +0.71

Avg. Rob. 3.54 2.86 26.09 27.62 20.86 4.84±0.01 32.85±3.70 13.17±0.04 14.45±0.03 38.17±0.09 +34.63
Acc. 61.51 55.80 40.25 42.30 51.02 61.61±0.03 61.79±0.13 57.35±0.03 56.88±0.02 59.75±0.06 -1.76

Table 4. Classification accuracy (%) on both adversarial images (Rob.) under 10-step CW attack [6] at ϵa = 1/255 and clean images
(Acc.) across 16 datasets. Weights and gradients of the deployed model are assumed to be known to the threat model. Comparison is
made among our paradigm and test-time defences adapted from existing adversarial studies, with finetuning-based models implemented as
a reference. We report the mean and standard deviation for test-time methods over 3 runs. The last column reports the gains w.r.t. original
CLIP without any finetuning or test-time operations.

10. Pitfalls of Adversarial Finetuning

In the main paper, we find that although TTC can further
improve robustness of adversarially finetuned CLIP models
at test time (Tab. 3), the robustness gains are less obvious
compared to the original CLIP. We also find that employing
TTC on unsupervised adversarial finetuning method FARE
[44] achieves greater gains compared to when employing
TTC on TeCoA [32] and PMG-AFT [50], which are super-
vised adversarially finetuned CLIP models. Since our TTC
paradigm is based on the expressiveness of the pre-trained
vision encoder fθ, we investigate this behaviour from the

perspective of fθ. Through analysis of randomly sampled
images, we find that adversarial finetuning significantly re-
duces the sensitivity of fθ to nuanced variations in the pixel
space. We study the values of τ of different adversarially
finetuned vision encoders when a random noise is imposed
on clean images and report the results in Fig. 7. As can
be seen from the figure, adversarial finetuning reduces the
sensitivity of fθ to pixel-level variations by orders of mag-
nitude, which we believe is the key mechanism through
which the adversarially finetuned models of CLIP achieve
robustness against adversaries. Regular finetuning of CLIP



(%) CLIP Adversarial Finetuning Test-time Defence
∆

CLIP-FT TeCoA1 TeCoA4 PMG-AFT1 PMG-AFT4 FARE1 FARE4 RN TTE Anti-adv HD TTC (ours)

TinyImageNet Rob. 0.00 2.19 4.87 10.12 4.39 9.59 0.29 1.24 0.00±0.00 1.77±1.28 0.09±0.01 0.01±0.00 6.75±0.21 +6.75
Acc. 57.64 77.06 70.86 63.84 66.85 59.77 73.63 70.69 51.85±0.04 56.73±0.22 52.62±0.20 51.07±0.09 51.85±0.04 -5.79

CIFAR10 Rob. 0.43 2.75 7.69 11.7 10.20 15.59 1.94 5.42 0.00±0.00 3.47±2.77 0.32±0.02 1.67±0.08 28.51±0.36 +28.08
Acc. 85.12 84.90 64.61 65.15 70.69 71.45 74.44 78.46 81.18±0.07 84.74±0.40 83.44±0.07 78.23±0.16 81.18±0.07 -3.94

CIFAR100 Rob. 0.05 0.67 6.54 9.25 7.60 10.80 2.64 4.54 0.00±0.00 1.37±0.96 0.22±0.03 0.00±0.00 9.06±0.11 +9.01
Acc. 57.14 59.51 35.96 36.30 40.32 41.51 46.67 47.38 56.34±0.20 58.61±0.25 53.96±0.17 52.86±0.16 56.34±0.20 -0.80

STL10 Rob. 0.16 3.75 24.80 31.83 28.49 35.40 9.99 17.59 0.06±0.01 32.56±11.76 2.25±0.10 3.39±0.12 52.40±0.34 +52.24
Acc. 96.40 94.49 87.40 81.69 88.56 84.35 91.72 89.11 95.85±0.04 96.26±0.04 95.47±0.06 89.50±0.07 95.83±0.03 -0.57

ImageNet Rob. 0.00 0.07 1.65 3.00 2.07 3.34 0.16 0.65 0.00±0.00 6.31±3.32 0.15±0.00 0.01±0.00 12.68±0.03 +12.68
Acc. 59.69 54.24 34.89 27.76 36.12 28.51 48.79 40.48 59.34±0.06 60.02±0.13 54.29±0.07 54.54±0.05 34.00±0.06 -25.69

Caltech101 Rob. 0.59 4.81 15.75 21.00 19.48 25.03 5.15 10.13 0.68±0.02 30.19±7.92 3.14±0.07 1.27±0.03 36.66±0.25 +36.07
Acc. 85.66 83.63 71.68 64.41 75.45 69.06 80.95 76.58 86.61±0.10 85.84±0.09 83.99±0.07 82.33±0.04 86.15±0.08 +0.49

Caltech256 Rob. 0.12 1.41 8.29 11.76 10.65 13.68 2.18 5.09 0.16±0.00 23.23±7.77 1.44±0.03 0.34±0.02 27.25±0.08 +27.13
Acc. 81.72 78.53 61.14 52.05 62.24 53.32 73.32 67.22 81.25±0.03 82.48±0.08 79.40±0.07 79.12±0.01 76.59±0.12 -5.13

OxfordPets Rob. 0.00 1.66 0.90 3.71 1.74 5.10 0.19 0.30 0.00±0.00 3.18±2.94 0.10±0.04 0.00±0.00 24.64±0.53 +24.64
Acc. 87.44 84.14 62.12 53.94 65.88 56.66 79.37 70.10 87.41±0.12 88.13±0.13 80.53±0.17 80.91±0.05 64.70±0.33 -22.74

Flowers102 Rob. 0.00 0.13 1.87 3.81 2.57 4.26 0.03 0.62 0.00±0.00 3.52±2.51 0.05±0.02 0.00±0.00 13.60±0.33 +13.60
Acc. 65.46 53.37 36.80 27.78 37.00 28.88 47.98 41.01 64.62±0.19 65.20±0.23 62.80±0.02 58.22±0.12 63.24±0.21 -2.22

FGVCAircraft Rob. 0.00 0.00 0.03 0.12 0.03 0.06 0.00 0.03 0.00±0.00 0.43±0.43 0.00±0.00 0.00±0.00 6.40±0.38 +6.40
Acc. 20.10 14.04 5.31 3.51 5.55 3.24 10.86 7.77 19.25±0.18 20.18±0.35 15.64±0.17 16.36±0.03 15.99±0.04 -4.11

StanfordCars Rob. 0.00 0.00 0.15 0.41 0.15 0.40 0.01 0.04 0.00±0.00 1.46±1.21 0.00±0.00 0.00±0.00 12.84±0.20 +12.84
Acc. 52.02 42.11 20.91 15.18 25.44 16.79 38.68 32.09 52.14±0.09 52.73±0.31 36.14±0.30 44.28±0.02 41.52±0.15 -10.50

SUN397 Rob. 0.00 0.02 1.30 2.31 1.90 3.24 0.13 0.57 0.00±0.00 5.95±3.39 0.11±0.00 0.00±0.00 13.43±0.08 +13.43
Acc. 58.50 55.73 36.69 28.16 37.98 29.93 52.42 43.57 59.69±0.06 59.12±0.08 55.99±0.04 53.17±0.02 46.68±0.02 -11.82

Country211 Rob. 0.00 0.00 0.05 0.19 0.12 0.24 0.00 0.02 0.00±0.00 0.24±0.15 0.00±0.00 0.00±0.00 2.44±0.15 +2.44
Acc. 15.25 12.07 4.75 3.66 4.64 3.34 9.26 6.58 14.80±0.02 14.66±0.14 11.60±0.08 11.72±0.07 11.99±0.01 -3.26

Food101 Rob. 0.00 0.04 0.56 1.35 1.03 2.12 0.06 0.24 0.00±0.00 5.31±4.09 0.07±0.02 0.01±0.00 17.89±0.13 +17.89
Acc. 83.88 64.86 29.98 21.90 36.61 27.97 55.31 41.98 83.44±0.04 83.96±0.01 75.95±0.17 80.30±0.05 80.00±0.07 -3.88

EuroSAT Rob. 0.00 0.00 9.77 10.71 9.61 10.36 0.00 7.34 0.00±0.00 0.11±0.09 0.03±0.02 0.20±0.02 13.57±0.12 +13.57
Acc. 42.59 27.64 16.58 17.53 18.53 19.19 21.88 18.22 53.24±0.09 44.38±1.62 36.81±0.12 39.08±0.06 53.24±0.09 +10.65

DTD Rob. 0.11 0.00 4.20 5.16 4.31 5.21 0.90 2.50 0.11±0.00 7.16±2.32 0.37±0.04 0.16±0.04 11.40±0.28 +11.29
Acc. 40.64 36.49 25.16 20.11 21.76 17.29 32.07 28.03 37.96±0.13 41.35±0.29 38.55±0.12 34.89±0.35 35.69±0.08 -4.95

PCAM Rob. 0.00 0.00 20.54 44.13 12.59 36.38 0.64 3.74 0.00±0.00 0.22±0.23 0.25±0.03 12.04±0.11 47.39±0.20 +47.39
Acc. 52.02 47.21 49.96 49.98 50.03 49.80 52.54 50.17 52.73±0.07 50.92±0.04 52.61±0.07 50.38±0.04 52.73±0.07 +0.71

Avg. Rob. 0.09 0.96 6.51 10.03 7.03 10.70 1.50 3.67 0.06±0.00 7.79±3.23 0.53±0.00 1.19±0.01 20.63±0.05 +20.54
Acc. 61.51 55.80 40.25 35.57 42.30 37.58 51.02 46.17 61.61±0.03 61.79±0.13 57.32±0.03 56.62±0.02 55.99±0.06 -5.52

Table 5. Classification accuracy (%) on both adversarial images (Rob.) under 10-step PGD attack at ϵa = 4/255 and clean images (Acc.)
across 16 datasets. Weights and gradients of the deployed model are assumed to be known to the threat model. Comparison is made among
our paradigm and test-time defences adapted from existing adversarial studies, with finetuning-based models implemented as a reference.
The superscripts of the model names indicate the attack budget used for generating adversarial images in the phase of adversarial finetuning.
We report the mean and standard deviation for test-time methods over 3 runs. The last column reports the gains w.r.t. original CLIP without
any finetuning or test-time operations.

Figure 7. Average τ of different CLIP vision encoders on ran-
domly sampled clean images across 16 datasets.

(CLIP-FT), i.e., finetuning the vision encoder with clean

images on TinyImageNet, also reduces the perception sensi-
tivity to some extent. Among adversarially finetuned mod-
els, FARE shows greater preservation of sensitivity com-
pared to its supervised counterparts TeCoA and PMG-AFT,
which explains the lower levels of adversarial robustness of
FARE (Tab. 1) and better robustness gains when employ-
ing TTC on FARE at test time (Tab. 3). Although resilience
to pixel-level variations translates to robustness of CLIP to
imperceptible malicious perturbations, it causes the vision
encoder to be less expressive. We argue that a fundamen-
tal difference between CLIP and non-foundational models
is that CLIP has learned massive amounts of real-world
knowledge, which should be taken into account in attempts
aiming to enhance its robustness. We also recommend cau-
tious use of adversarial finetuning as the only robustifying
approach for CLIP and other large pre-trained models in
general.



11. Effects of Other Hyperparameters
In the main paper, we find that the number of counterattack
steps N is the crucial hyperparameter that greatly impacts
robustness. In this section, we investigate the impact of the
other two hyperparameters τthres (Eq. (4)) and β (Eq. (5)),
which control the threshold of L2 drift ratio and the ascend-
ing rate of weights across counterattack steps, respectively
(Algorithm 1). We vary one hyperparameter at a time w.r.t.
the default setting τthres = 0.2 and β = 2.0. The counter-
attack budget ϵttc and steps N are fixed to ϵttc = 4/255 and
N = 2, respectively. We report the results in Tab. 6. It can
be seen that both hyperparameters control the trade-off be-
tween the accuracy on clean images and adversarial images.
When the threshold τthres is relatively small, the accuracy
on clean images can be better retained, while the robustness
gains are limited, since the values of τ for most clean and
adversarial images are above the set threshold, which halts
necessary counterattacks. Robustness increases as τthres
is set higher, and reaches a plateau after τthres = 0.2.
Further increasing the threshold compromises accuracy on
clean images. The impact of β is less obvious. In general,
a larger β assigns higher weights to counterattack perturba-
tions at later steps, thereby favouring robustness.

12. Adaptive Attacks
In the paper, we demonstrate that CLIP possesses the ability
to defend itself from adversarial attacks that aim to max-
imise the classification loss of CLIP, assuming that such
counterattacks by the end user are not known to the at-
tacker. Here we provide a gradient-based method tailored
to break our TTC. Our TTC paradigm can be written as
φ(x) = x + δ∗(x), where x is a test image and δ∗ is a
function of x that induces the maximum L2 drift of x in the
embedding space of CLIP:

δ∗(x) = argmax
δ
∥fθ(x+ δ)− fθ(x)∥, s.t. ∥δ∥ ≤ ϵttc

(12)
Therefore, the attacker may incorporate φ(x) into the objec-
tive when crafting an adversarial image aiming to maximise
the classification loss:

x′ = argmax
xs

L(fθ(φ(xs)), tc), s.t. ∥xs − x∥ ≤ ϵa (13)

When employing gradient-based attack methods such as
PGD to solve Eq. (13), the inner optimization of Eq. (12)
can be approximated by a one-step update:

φ(x) = x+ δ∗(x)

≈ x+ δ0 + η∇δ∥fθ(x+ δ0)− fθ(x)∥
(14)

where η is the step size for the counterattack and δ0 ∼
U(−ϵttc, ϵttc) is a randomly initialised noise δ0. Thus, the

objective for generating the adversarial attack can be written
as L

(
fθ(x+ δ0 + η∇δ∥fθ(x+ δ0)− fθ(x)∥), tc

)
. By

employing PGD to craft an adversary that maximises this
objective, the attacker may break the counterattacks per-
formed by the end user.
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0.2 2.0 28.75 14.31 76.70 38.41 65.78 60.11 57.87 39.14 13.77 33.01 41.52 7.09 57.84 12.19 27.32 52.85 39.17 59.75

0.05 2.0 2.07 0.69 16.35 2.77 19.14 11.83 3.35 2.75 0.00 0.37 2.35 0.12 1.51 0.14 5.74 3.72 4.56 61.63
0.1 2.0 2.15 0.88 26.21 18.95 32.96 28.28 32.35 25.13 2.19 16.78 17.06 2.35 29.31 0.67 17.66 37.25 18.14 61.46

0.15 2.0 7.62 4.96 56.45 33.06 55.43 50.48 52.77 36.82 9.33 30.33 34.07 5.48 53.22 5.66 25.21 48.50 31.84 61.00
0.25 2.0 44.20 22.29 83.09 40.18 69.32 63.45 58.93 40.01 14.97 33.42 43.64 7.73 58.63 18.16 28.46 55.49 42.62 57.31
0.3 2.0 50.10 25.94 84.86 40.66 70.43 64.48 59.12 40.14 15.30 33.44 44.30 7.89 58.87 21.19 28.88 56.65 43.89 54.18

0.35 2.0 51.97 27.07 85.49 40.83 70.76 64.94 59.23 40.15 15.45 33.48 44.49 7.96 58.95 22.64 29.10 57.17 44.35 50.67
0.4 2.0 52.36 27.51 85.56 40.91 70.89 65.10 59.25 40.15 15.51 33.48 44.56 7.99 58.99 23.44 29.15 57.40 44.52 47.75

0.2 0.5 27.08 13.25 74.58 33.53 63.50 57.44 48.24 32.90 10.98 27.75 36.45 5.71 51.96 12.11 24.95 41.20 35.10 60.24
0.2 1.0 28.01 13.84 75.97 36.39 64.94 59.12 53.80 36.27 12.72 30.95 39.35 6.48 55.60 12.44 26.65 48.03 37.54 60.00
0.2 1.5 28.42 14.02 76.46 37.73 65.54 59.81 56.55 38.12 13.50 32.28 40.80 6.90 57.18 12.49 27.45 51.25 38.66 59.85
0.2 2.5 28.82 14.13 76.81 38.77 65.89 60.25 58.54 39.76 13.71 33.44 41.83 7.28 58.10 12.55 27.77 53.98 39.48 59.72
0.2 3.0 28.95 14.15 76.91 38.95 66.03 60.34 58.90 40.06 13.92 33.62 42.07 7.36 58.25 12.54 27.87 54.50 39.65 59.70

Table 6. The Effects of hyperparameters τthres and β under 10-step PGD attack with ϵa = 1/255. The counterattack budget and steps
are fixed at ϵttc = 4/255 and N = 2, respectively. We report the robust accuracy for each dataset. The last column reports the average
accuracy on clean images across 16 datasets.
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