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Zero-shot Adversarial Robustness of CLIP

Supplementary Material

7. Analysis of 7

In the paper, we define a stochastic variable 7 (Eq. (4)). In
this section, we provide more results of 7 and theoretical
analyses. We report the values of 7 for 16 datasets in Fig. 6.
As can be seen from Fig. 6, when the random noise added
onto the image is small, the resultant Lo drift of the adver-
sarial images in the embedding space is unusually small,
indicating that they are trapped in their toxic local sur-
roundings induced by the adversaries that seek to maximise
the classification loss of CLIP. This behaviour is termed as
‘false stability’ in the main paper. When the strength of
the random noise is sufficiently large, the Lo drift of ad-
versarial images is disproportionately enlarged. In contrast,
the values of 7 increase more steadily for clean images, as
the noise strength €,45,40m increases, without showing dis-
proportionate changes. Below we theoretically analyse the
behaviour of ‘false stability’ of adversarial images.

7.1. Theoretical Analysis

Given a pre-trained vision encoder fy, a natural
(unattacked) image = € RE*"W>*H and an adversarial im-
age ' that is manipulated to maximise the classification
loss of CLIP:

2 = argmax L(fo(xs),te), st.||xs — 2o <€ (7)

the resultant embedding fp(x + n) when a small random
noise n € REXWxH U(_e'r’andoma 6random) is imposed
can be written as the Taylor expansion of f at x:

fola-tn) = @)+ Ty@)-n+ 50T Hy(o) noto- 8)

where Jy(x) and Hy(z) are the Jacobian matrix and Hes-
sian matrices of f at x, respectively, assuming that f is
smooth around . Provided that the random noise n is small,
the above embedding can be approximated by the first-order
expansion:

folz +n) = fo(z) + Jp(z) - n ©)
Therefore, the Lo drift induced by n can be written as:

I fo(z +mn) = fo(z) || = Jp(z) - n ||
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where d is the latent space dimensionality of CLIP, and N =
C x W x H is the pixel space dimensionality.

When Eq. (7) is computed by gradient-based methods
such as PGD [6], 2’ is obtained through gradient ascent in
the direction that increases the classification loss L:
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As such, the approximation of Eq. (7) can be seen as con-
stantly searching the pixel space for the trajectory starting
from x that causes the steepest ascent of L, i.e., the strongest
activation of J(x), within a limited number of steps. Since
2’ is the approximation result of Eq. (7), it lies in the tra-
jectory where Jy(z) is the most activated, and is there-
fore insensitive to a random noise n, which is statistically
isotropic in the pixel space with a tiny component that lies
in the direction of g—? - J7(2)|g=s. In contrast, a clean
image x without being manipulated based on J(z) does
not show unusually strong activations in any direction, and
can be more activated by an isotropic noise n. Therefore,
|Jf(x) - n|| > ||Jf(z’) - n| holds when n is a small random
noise in the pixel space, rendering the adversarial image z’
‘falsely stable’.

8. More Results on Adversarial Robustness

In this section, we provide more complete results on adver-
sarial robustness.

8.1. Robustness under CW attacks

Following previous studies [32, 50], we further test adver-
sarial robustness of our test-time counterattack paradigm
under CW attack [6], with the attack budget at ¢, = 1/255.
Tab. 4 reports the full table of results. It can be seen that
for CW attacks, our TTC paradigm can still achieve stable
robustness gains across 16 datasets. RN and TTE do not
degrade accuracy on clean images since they do not counter
the potential adversary by perturbing test images. Similarly
to when tested under PGD attacks, TTE does not provide
stable robustness. Compared to Anti-adversary and HD,
which optimise a perturbation based on some objective, our
TTC retains the best clean accuracy while significantly im-
proving robustness. This shows that our paradigm can also
be employed in test time to defend CLIP against other attack
methods that maximise the classification loss of CLIP.



. clean . clean

o4 adv. 04 adv. adv.
05

03 03
0.4

- v -

0.2 0. 03
02

0.1 0
0.1

= clean 0.6

o

=

adv.
0.5
o. 03
- 5
0.3 02
0.2
0.1
0.1
0

- clean 0471 mmm clean

adv. adv.
03
| I Fo. |
I o I

0.6 mmm clean

s
N

f

0.0 0.0 0.0
1255 4/255 81255 16/255 11255 4/255 8/255 16/255 1255 4/255 81255 16255
€random  Erandom Erandom

0.0 4 ¥ L
1/255 4/255 8/255 16/255
Erandom

0. 0.0
1255 41255 8255 16/255 1255 4/255 81255 16255
Erandom Erandom

(a) Caltech101 (b) Caltech256 (c) CIFAR10 (d) CIFAR100 (e) Country211 (f) DTD
0.6 ™= clean 0.4 W= clean 041 mm clean 0.4 mmm clean 0.4 WEm clean 035 mmm dean
adv. adv. adv. adv. adv. i
05 03 s 030
0.4 o3 ' 03 0.25
" o3 " oa v o2 o2 " 02 . 0.20
015
02
0.1 0.1 0.1 0.1 010
01 l 0.05 I
0.0 0.0 0.0 0.0 0.0 ' v 0.00
17255 4/255 8/255 16/255 17255 4/255 8/255 16/255 17255 4/255 8255 16/255 1255 4/255 8/255 16/255 1255 4/255 8/255 16/255 1255 47255 8255 16/255
rrrrrrrrrrrrrrrrrrrrrrrrr dom Erandom Erandom Erandom
(g) EuroSAT (h) FGVCAircraft (i) Flowers102 (j) Food101 (k) ImageNet (1) OxfordPets
0.4 mmm clean 04 051 mmm clean 0.4 mm clean

0.0 0.
1/255 4/255 8/255 16/255 1/255 4/255 8255 161255

,,,,,,,,,,,,,,

(m) PCAM (n) StanfordCars

- clean
adv. adv.

0.3 0.3

0.3
¥ 0.2 " 02 L4

0.2

0.1
0.1 l 01

0 1

0.0
1/255 4/255 8/255 16/255

o

e

adv. adv.
0.3
-
0 I ‘
) l

0.0
1/255 4/255 8255 161255

,,,,,,,,,,,,,,

(o) STL10 (p) SUN397

Figure 6. Values of 7 on clean and adversarial images (e, = 1/255) across 16 datasets. For each dataset, we randomly sample 100 images

and report the average values.

8.2. Robustness under ¢, = 4/255

Tab. 5 reports the full table of robustness under 10-step PGD
attack with the attack budget being ¢, = 4/255. It can
be seen that TTC achieves consistent and stable robustness
gains across 16 datasets. Anti-adversary [1] and HD [52]
bring little to no robustness under a high attack strength
at ¢, = 4/255. RN and TTE [38] perform best in terms
of accuracy on clean images, which is understandable be-
cause they do not optimise any perturbation to counter the
adversary. RN does not provide any robustness, showing
that an additive random noise in the pixel space as large as
the attack budget is not able to counteract the false stabil-
ity of adversarial images. TTE [38] improves robustness of
CLIP against PGD attacks with a high strength ¢, = 4/255
to some extent. However, the robustness gain is unstable,
as indicated by the high standard deviation of robust accu-
racy across different runs. For TTC, the number of steps
N is increased to 5 for more effective counterattacks in this
setting, which reduces the average clean accuracy by 5.52,
compared to the original CLIP model. This trade-off is still
reasonable given the consistent robustness gains.

9. Trade-off between Clean Accuracy and Ro-
bustness

Although we show that performing counterattacks at test
time brings stable robustness gains, there is a reduction in
clean accuracy, as can be seen in Tab. | and Tab. 5. Pre-
vious studies extensive analyse the trade-off between accu-
racy and robustness. TRADES [58] theoretically analyse
such trade-off and propose to control it with a hyperparam-
eter. In this work, the user-defined hyperparameter 7.
adjusts the trade-off by determining whether a test image
is ‘falsely stable’ or not, with a higher value benefiting ro-
bustness at a cost of clean accuracy. In our experiments, the
reduction in clean accuracy is larger on some datasets such
as ImageNet than others. This can be attributed to the differ-
ent 7 behaviour of clean images on various datasets. From
Fig. 6, it can be seen that clean images of ImageNet exhibit
lower values of 7 when a random noise at the strength of
4/255 is imposed. This causes more clean images of Im-
ageNet to be considered as ‘falsely stable’ when the same
Tenres Of 0.2 is employed, subjecting them to unnecessary
counterattacking. In the future, we aim to further mitigate
such trade-off by adaptively configuring 7.5 for down-
stream data distributions.



%) CLIP Adversarial Finetuning Test-time Defence A
° CLIPFT TeCoA PMG-AFT FARE RN TTE Anti-adv HD TTC (ours)

ClFARlo  ROb-| 087 | 094 3327 39.50 206 || 2.05+0.05 40014625 12.53+£0.01 1479:0.10 29.04-0.02 | +28.17
Acc. | 85.12 | 8490  64.61 7069 7444 || 81.18+0.07 8474040 83.52+-0.00 78.64-0.02 81.18-0.07 | -3.94

crEarioo  Rob- | 029 | 0.39 18.27 20.83 11.67 || 0.63+0.06 1873387 656023  3.04-0.04 14384023 | +14.09
Acc. | 57.14 | 5951  35.96 4032 46.67 | 5634020 58.61+0.25 53.95+-0.15 53.50+0.02 56.34-0.20 | -0.80

STLIO Rob. | 1223 | 995  69.73 7239 59.60 || 17.2040.15 78.64-3.91 38.66:-0.17 37.73:0.22 76.40-0.16 | +64.17
Acc. | 9640 | 9449  87.40 8856  91.72 || 95.8540.04 96.26-0.04 9545+0.05 89.54-0.05 95.85+0.04 | -0.55

ImaseNe | ROD | 1:46 1.27 18.28 1942 2771 || 2214000 29774419  937+0.05  7.46:+0.05 36.01+0.15 | +34.55
8 Acc. | 59.69 | 5424  34.89 3612 4879 || 59.3440.06 60.02-0.13 5427+40.14 55.06:0.05 49.39-0.00 | -10.30
Caltechior  ROD- | 2088 | 1595 5623 6158  54.86 || 25.8940.11 69.44-3.00 41.4740.02 36.26-0.05 66.17-0.31 | +45.29
Acc. | 85.66 | 83.63  71.68 7545 8095 || 86.61+-0.10 85.84-0.00 84.0240.10 83.00-0.07 86.53-0.07 | +0.87
Caltechzss ROP- | 960 | 724 4263 4455 3958 | 13.11-0.05 59.8143.97 27.17-0.07 24.54+0.09 58.79-0.07 | +49.10
Acc. | 8172 | 7853  6l.14 6224 7332 || 81.25+0.03 82.48+0.08 79.38+0.12 79.38-0.05 79.66-0.04 | -2.06

Oxfordpets  ROD | 1:64 114 3791 3928 3385 || 3.11+0.04 51124698 22.99+-0.52 13.84-0.27 57.15+-0.61 | +55.51
Acc. | 87.44 | 8414 6212 65.88 7937 || 87.41+0.12 8813+0.13 80.62+-0.35 80.64--0.15 83.35-0.21 | -4.09

Fowersloz  RoD-| 135 | 080 2113 2134 1725 || 2.13+0.06 34974425 8.06+0.07 851-0.04 36.84-0.13 | +35.49
owers Acc. | 6546 | 5337  36.80 3700 4798 | 64.620.10 65.20+0.23 62.66-0.14 57.794+0.08 64.16=0.19 | -1.30
FGVCAircrat ROP- | 000 | 000 225 1.86 135 || 0.00-0.00 5154125 0.83+0.11 097+0.06 12.41+0.32 | +12.41
Acc. | 2010 | 1404 531 555 10.86 | 19254018 20.18+0.35 15.88+0.23 16.18+0.21 18.00-0.16 | -2.10
StanfordCars ROD- | 238 | 204 8.74 10.53 9.14 || 244+0.02 21194341 476+0.18  5.11-0.05 30.38+0.12 | +28.00
Acc. | 5202 | 4211 2091 2544 3868 || 52.14+0.09 52734031 36214027 43.60+0.05 48.16+0.16 | -3.86

suNzoy  Rob | 175 1.48 18.36 2039 1573 || 248+0.03 29374405 885+0.01  7.90-0.03 39.44-0.07 | +37.69
Acc. | 58.50 | 5573 36.69 3798 5242 || 59.690.06 59.1240.08 56.00-0.04 54.07+0.01 55.13-0.06 | -3.37

Counrvay  Rob-| 008 | 005 1.46 1.74 092 | 015+40.02 3.00-0.74  072+0.05 0.75+0.02  617+0.11 | +6.09
ountry Acc. | 1525 | 1207 475 4.64 926 || 14.80+0.02 14.66-0.14 11.58+0.12 11.9840.02 13.08-0.05 | -2.17
Foodlor  Rob-| 109 | 055 12.87 1657 1293 || 1.9240.04 4461-642 1503+40.11 9.77+0.06 54.6510.13 | +53.56
00 Acc. | 83.88 | 64.86  29.98 36.61 5531 || 83.44+0.04 83.96+0.01 75814022 81.0240.05 82.18+0.02 | -1.70
BurosaT RO [ 003 | 003 11.66 1194 1066 || 0.16410.00 644+1.74 2.57+0.08 3474017 12.69+0.07 | +12.66
uro Acc. | 4259 | 27.64  16.58 18.53  21.88 | 53.2440.00 4438+1.62 36.78+0.18 40.12+0.13 53.24-0.00 | +10.65
DTD Rob. | 2.87 | 277 16.28 1372 1436 | 3461004 22.6222.06 6.06-0.04 10.11£0.16 27.3911.07 | +24.52
Acc. | 40.64 | 3649  25.16 2176 3207 || 37.96+0.13 41354029 38.92+-0.22 3525-0.22 3698021 | -3.66

PCAM Rob. | 0.10 110 4829 4636 1641 | 044002 10.70-3.25 5.0720.02 46.92+0.10 52.8610.06 | +52.76
Acc. | 5202 | 4721  49.96 50.03 5254 || 52.73+0.07 50.9240.04 52.49+0.02 50.35+0.01 52.73+0.07 | +0.71

A\ Rob. | 3.54 | 286  26.09 2762 2086 || 4.84+0.01 32.85-3.70 13.1740.04 144540.03 38.07-0.09 | +34.63
Ve Acc. | 6151 | 5580 4025 4230 5102 | 61.61:£0.03 6L7940.13 57.35-0.03 56.88+0.02 59.75-0.06 | -1.76

Table 4. Classification accuracy (%) on both adversarial images (Rob.) under 10-step CW attack [0] at ¢, = 1/255 and clean images
(Acc.) across 16 datasets. Weights and gradients of the deployed model are assumed to be known to the threat model. Comparison is
made among our paradigm and test-time defences adapted from existing adversarial studies, with finetuning-based models implemented as
a reference. We report the mean and standard deviation for test-time methods over 3 runs. The last column reports the gains w.r.t. original

CLIP without any finetuning or test-time operations.

10. Pitfalls of Adversarial Finetuning

In the main paper, we find that although TTC can further
improve robustness of adversarially finetuned CLIP models
at test time (Tab. 3), the robustness gains are less obvious
compared to the original CLIP. We also find that employing
TTC on unsupervised adversarial finetuning method FARE
[44] achieves greater gains compared to when employing
TTC on TeCoA [32] and PMG-AFT [50], which are super-
vised adversarially finetuned CLIP models. Since our TTC
paradigm is based on the expressiveness of the pre-trained
vision encoder fy, we investigate this behaviour from the

perspective of fy. Through analysis of randomly sampled
images, we find that adversarial finetuning significantly re-
duces the sensitivity of fy to nuanced variations in the pixel
space. We study the values of 7 of different adversarially
finetuned vision encoders when a random noise is imposed
on clean images and report the results in Fig. 7. As can
be seen from the figure, adversarial finetuning reduces the
sensitivity of fy to pixel-level variations by orders of mag-
nitude, which we believe is the key mechanism through
which the adversarially finetuned models of CLIP achieve
robustness against adversaries. Regular finetuning of CLIP



Adversarial Finetuning

H Test-time Defence

) ‘ CLIp [CLIP-FT TeCoA' TeCoA’ PMG-AFT" PMG-AFT' FARE' FARE' | RN TTE Anti-adv HD TTC (ours) | A
CrFARlo  ROD-| 043 | 275 7.69 11.7 1020 1559 194 542 || 000£0.00 3474277 0324002 167008 28.51+0.36 | +28.08
Acc. | 8512 | 8490 6461  65.15 70.69 71.45 7444 7846 || 81.18140.07 84741040 83441007 7823+0.16 S81.18-0.07 | -3.94

crFARIo0  Rob- | 005 | 067 6.54 925 7.60 10.80 264 454 || 0004000 1374096 0224003  0.00+0.00  9.06:0.11 | +9.01
Acc. | 57.14 | 5951 3596 3630 4032 4151 4667 4738 || 56344020 58.6110.25 53.96:0.17 52.86-0.16 5634-0.20 | -0.80
STLIO Rob. | 0.16 | 375 2480 3183 28.49 35.40 999 1759 || 0.06+0.01 325641176 2254010  3.3940.12 52404031 | +52.24
Acc. | 9640 | 9449 8740  81.69 88.56 84.35 9172 89.11 || 95.8540.01 96.26-0.01 9547+0.06 89.5040.07 95.83+0.03 | -0.57
ImaseNet | ROD-| 000 | 0.07 1.65 3.00 2.07 334 016 065 || 0000000 6314332  015:0.00 0014000 12.68+:0.03 | +12.68
MASENEL Acc. | 59.69 | 5424 3489 2776 36.12 28.51 4879 4048 || 59.3440.06  60.02+-0.13  5429+-0.07 54.54+0.05 34.00-0.06 | -25.69
Caltecniol ROD-| 059 | 481 1575 21.00 19.48 25.03 515 1013 || 0.68+0.02 30.1947.02  3.14+0.07  1.27+0.03 36.66-0.25 | +36.07
Acc. | 8566 | 83.63 7168 6441 75.45 69.06 8095  76.58 || 86.6140.10 85.84-0.00 83.9940.07 823310.01 86.15-0.08 | +0.49
Caltectss ROD-| 012 [ 141 8.29 1176 10.65 13.68 218 509 || 0.16:0.00 2323+7.77 144003 0344002 27.25:0.08 | +27.13
Acc. | 8172 | 7853 6114 5205 62.24 5332 7332 67.22 || 81.2540.03 8248-0.08 79.40-0.07 79.1240.01 76.59+0.12 | -5.13
Oxfordpers ROD- | 0:00 | 1.6 0.90 371 1.74 5.10 0.19 030 || 0.0040.00  3.18:2.94  0.10-0.04  0.004+0.00 3 | +24.64
X Acc. | 8744 | 8414 6212 5394 65.88 56.66 7937 7010 || 87.4140.12 8813+0.13 80.5310.17 80.91+-0.05 033 | 2274
Flowersl0y  Rob- | 000 | 013 1.87 381 257 426 003 062 || 000:0.00 3521251  0.05:0.02 0005000 13.60-0.33 | +13.60
wers Acc. | 6546 | 5337 3680 2778 37.00 28.88 4798 4101 || 64.6240.19 65204023 62.80-0.02 58224012 6324021 | -2.22
FGVCAirerari ROD- | 0:00 | 000 0.03 0.12 0.03 0.06 000 003 || 0.00:0.00 0434043  0.00:0.00  0.00:0.00 640+10.38 | +6.40
TErat - Ace. | 2010 | 14.04 531 351 555 324 1086 777 | 19254018  20.18+0.35 1564017 1636:+£0.03 1599:0.04 | -4.11
StnfordCars ROD- | 0:00 [ 0.00 0.15 041 0.15 0.40 001 004 || 0004000 1464121 000000  0.00+0.00 12.84+0.20 | +12.84
AnoraRars - Ace. | 52.02 | 42.11 2091 15.18 25.44 16.79 3868 3209 || 52.14£0.00 5273031  36.14:0.30 4428+0.02 41.52+0.15 | -10.50
sUNzg7  Rob-| 000 | 002 130 231 1.90 324 0.3 057 || 0004000 5954339  0.11+0.00  0.00+0.00 13434008 | +13.43
: Acc. | 5850 | 5573 3669  28.16 37.98 29.93 5242 4357 || 59.6910.06 59.1240.08 55994004 53.17+40.02 46.68+0.02 | -11.82
Countval]  ROD- | 000 | 000 0.05 0.19 0.12 0.24 000 002 || 0.00-0.00 024+0.15  0.00-0.00 0.00-0.00 2.44+0.15 | +2.44
ountry Acc. | 1525 | 12,07 475 3.66 4.64 334 926 658 || 14.80-0.02 1466011 11.60-0.08 11.7240.07 11.99+0.01 | -3.26
Foodiol  RoD-| 000 [ 0.04 0.56 135 1.03 2.12 006 024 || 0000000 5314409 007002 0014000 17.89+0.13 | +17.89
Acc. | 83.88 | 6486 2998  21.90 36.61 27.97 5531 4198 || 834414001 83.96-0.01 7595+0.17 8030+0.05 80.00+-0.07 | -3.88
Burosar RO | 000 | 000 9.77 10.71 9.61 1036 000 734 || 000000  0.01+0.09  0.03:0.02 0204002 13.57:0.12 | +13.57
Acc. | 4259 | 2764 1658 1753 18.53 19.19 2188 1822 || 53241000 4438+162 36814012 39.08:0.06 53.2410.09 | +10.65
DTD Rob. | 0.11 | 0.00 420 5.16 431 521 090 250 || 0114000  7.016+2.32  037-0.04  0.16+0.04 1140+0.28 | +11.29
Acc. | 40.64 | 3649 2516  20.11 21.76 1729 3207 2803 || 37964013 4135:0.290 38551012 34.8910.35 35.69+0.08 | -4.95
PCAM Rob. | 0.00 | 0.00 2054 4413 12.59 36.38 064 374 || 0004000 0224023 025003 12.04-0.11 47.39-0.20 | +47.39
Acc. | 5202 | 4721 4996  49.98 50.03 49.80 5254 5017 || 5273+0.07  50.92+40.04  52.6140.07 5038+0.04 5273+0.07 | +0.71
R Rob. | 0.09 | 096 651 10.03 7.03 10.70 150 367 || 0064000 7794323  053+0.00  1.1940.01  20.63+0.05 | +20.54
Ve Acc. | 6151 | 5580 4025 3557 42.30 37.58 5102 4617 || 61.6140.03 6L79+0.13  57.3240.03 56.62+-0.02 5599:0.06 | -5.52

Table 5. Classification accuracy (%) on both adversarial images (Rob.) under 10-step PGD attack at €, = 4/255 and clean images (Acc.)
across 16 datasets. Weights and gradients of the deployed model are assumed to be known to the threat model. Comparison is made among
our paradigm and test-time defences adapted from existing adversarial studies, with finetuning-based models implemented as a reference.
The superscripts of the model names indicate the attack budget used for generating adversarial images in the phase of adversarial finetuning.
We report the mean and standard deviation for test-time methods over 3 runs. The last column reports the gains w.r.t. original CLIP without

any finetuning or test-time operations.
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Figure 7. Average 7 of different CLIP vision encoders on ran-
domly sampled clean images across 16 datasets.

(CLIP-FT), i.e., finetuning the vision encoder with clean

images on TinyImageNet, also reduces the perception sensi-
tivity to some extent. Among adversarially finetuned mod-
els, FARE shows greater preservation of sensitivity com-
pared to its supervised counterparts TeCoA and PMG-AFT,
which explains the lower levels of adversarial robustness of
FARE (Tab. 1) and better robustness gains when employ-
ing TTC on FARE at test time (Tab. 3). Although resilience
to pixel-level variations translates to robustness of CLIP to
imperceptible malicious perturbations, it causes the vision
encoder to be less expressive. We argue that a fundamen-
tal difference between CLIP and non-foundational models
is that CLIP has learned massive amounts of real-world
knowledge, which should be taken into account in attempts
aiming to enhance its robustness. We also recommend cau-
tious use of adversarial finetuning as the only robustifying
approach for CLIP and other large pre-trained models in
general.



11. Effects of Other Hyperparameters

In the main paper, we find that the number of counterattack
steps N is the crucial hyperparameter that greatly impacts
robustness. In this section, we investigate the impact of the
other two hyperparameters ;.5 (Eq. (4)) and g8 (Eq. (5)),
which control the threshold of L, drift ratio and the ascend-
ing rate of weights across counterattack steps, respectively
(Algorithm 1). We vary one hyperparameter at a time w.r.t.
the default setting 7¢pes = 0.2 and 8 = 2.0. The counter-
attack budget €;;. and steps N are fixed to ;. = 4/255 and
N = 2, respectively. We report the results in Tab. 6. It can
be seen that both hyperparameters control the trade-off be-
tween the accuracy on clean images and adversarial images.
When the threshold 7,5 is relatively small, the accuracy
on clean images can be better retained, while the robustness
gains are limited, since the values of 7 for most clean and
adversarial images are above the set threshold, which halts
necessary counterattacks. Robustness increases as Tipres
is set higher, and reaches a plateau after ¢y, = 0.2.
Further increasing the threshold compromises accuracy on
clean images. The impact of 3 is less obvious. In general,
a larger /3 assigns higher weights to counterattack perturba-
tions at later steps, thereby favouring robustness.

12. Adaptive Attacks

In the paper, we demonstrate that CLIP possesses the ability
to defend itself from adversarial attacks that aim to max-
imise the classification loss of CLIP, assuming that such
counterattacks by the end user are not known to the at-
tacker. Here we provide a gradient-based method tailored
to break our TTC. Our TTC paradigm can be written as
o(z) = x + 0*(x), where x is a test image and 0* is a
function of x that induces the maximum Lo drift of x in the
embedding space of CLIP:

5% () = arg max | fo(w +8) = fo(w) [ 5.£.113] < e
(12)
Therefore, the attacker may incorporate () into the objec-
tive when crafting an adversarial image aiming to maximise
the classification loss:

o' = argmax L(fo((5)), te), s.t.[|zs — x| < eq (13)

When employing gradient-based attack methods such as
PGD to solve Eq. (13), the inner optimization of Eq. (12)
can be approximated by a one-step update:

p(a) = o + 5" (x)

14
ot 8 4 nalfalw 48— fol)] P

where 7 is the step size for the counterattack and 6° ~
U(—€tte, €11c) is a randomly initialised noise 6°. Thus, the

objective for generating the adversarial attack can be written
as L (fo(z + 0% +0Vs fo(z +0°) — fo(x)l]), tc). By
employing PGD to craft an adversary that maximises this
objective, the attacker may break the counterattacks per-
formed by the end user.
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Tiwes B | O C DN S J S & IS S & S & 5 NS ¢ ¢
02 202875 1431 7670 3841 6578 60.11 57.87 39.4 1377 3301 4152 7.09 5784 1219 2732 5285 | 39.17 59.75
005 20| 207 069 1635 277 1914 1183 335 275 0.00 037 235 012 151 014 574 372 | 456  61.63

0.1 20| 215 088 2621 1895 3296 28.28 3235 2513 2.19 16.78 17.06 2.35 2931  0.67 17.66 3725 | 18.14 6146
015 20| 7.62 496 5645 33.06 5543 50.48 5277  36.82 9.33 3033 34.07 5.48 5322 566 2521 4850 | 31.84 61.00
025 20| 4420 2229 83.09 40.18 69.32 63.45 58.93  40.01 14.97 3342 4364 7.73 58.63 18.16 2846 5549 | 42.62  57.31
03 20| 50.10 2594 8486 40.66 7043 64.48 59.12 40.14 15.30 3344 4430 7.89 58.87 21.19 28.88 56.65 | 43.89 54.18
035 20| 5197 2707 8549 40.83 70.76 6494 5923  40.15 15.45 3348 4449 7.96 5895 22.64 29.10 57.17 | 4435  50.67
04 20| 5236 27.51 8556 4091 70.89 65.10  59.25  40.15 15.51 33.48  44.56 7.99 58.99 2344 29.15 5740 | 4452 4775

02 052708 1325 7458 3353  63.50 5744 4824 3290 10.98 2775 3645 5.71 51.96 1211 2495 4120 | 3510 60.24
0.2 1.0 | 28.01 13.84 7597 3639  64.94 59.12 53.80  36.27 12.72 3095 3935 6.48 55.60 1244 2665 48.03 | 37.54  60.00
0.2 1.5 | 2842 14.02 7646 37773  65.54 59.81 56.55  38.12 13.50 3228  40.80 6.90 57.18 1249 2745 5125 | 38.66  59.85
02 25| 2882 1413 7681 3877 6589 60.25 58.54  39.76 13.71 33.44 4183 728 58.10 1255 27.77 5398 | 3948  59.72
02 30| 2895 1415 7691 3895 @ 66.03 60.34 5890  40.06 13.92 33.62 4207 7.36 5825 1254 27.87 5450 | 39.65  59.70

Table 6. The Effects of hyperparameters T¢p,es and 8 under 10-step PGD attack with €, = 1/255. The counterattack budget and steps
are fixed at exzc = 4/255 and N = 2, respectively. We report the robust accuracy for each dataset. The last column reports the average
accuracy on clean images across 16 datasets.
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