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Supplementary Material

1. Comprehensive Comparison in Training001

1.1. Baselines002

To further validate the effectiveness of our method, we003
conduct comparisons using the identical training recipe004
as LLaVA-1.5-7B [4] with three other baselines: Q-005
Former [3], FastV [2], and LLaVolta [1]. These meth-006
ods differ only in their compression strategies, while all007
other factors are kept consistent to ensure a fair compari-008
son. These approaches represent the latest state-of-the-art009
techniques specifically designed for redundancy reduction.010
A brief introduction to each is provided below.011
Q-former It is a lightweight transformer that uses a set of012
learnable query vectors to extract visual features from the013
frozen image encoder. This method has been used in many014
models and has proven to be effective. It is an efficient way015
to compress image tokens, with compression occurring be-016
fore entering the LLM, thereby ensuring high compression017
efficiency.018
FastV It is currently the state-of-the-art method for infer-019
ence acceleration. Here, we also apply it for efficient train-020
ing, as it leverages the image token redundancy in LLMs to021
accelerate inference, and there is no gap in directly transfer-022
ring this approach to training.023
LLaVolta This is the current state-of-the-art method for024
training acceleration. They introduce Visual Context Com-025
pressor, which reduces the number of visual tokens during026
training. To minimize information loss caused by the com-027
pression on visual tokens while maintaining training effi-028
ciency, they develop LLaVolta as a lite training scheme.029
LLaVolta incorporates stage-wise visual context compres-030
sion to progressively compress the visual tokens from heav-031
ily to lightly, and finally no compression at the end of train-032
ing, yielding no loss of information when testing.033

1.2. Implementation details034

Notably, the original implementation of FastV utilize an035
eager attention mechanism to facilitate the output of at-036
tention maps. However, this approach significantly slows037
down training. To ensure a fair comparison, we recalculate038
its attention maps using the FlashAttention implementation,039
as employed in our paper, to improve training speed. Ad-040
ditionally, since the original experiments for LLaVolta are041
conducted on 8× Nvidia RTX 6000 Ada GPUs, we retrain042
it on 8× NVIDIA A100 80GB GPUs to account for differ-043
ences in training times across hardware. During inference,044
all image tokens were used for processing. For Q-Former,045
we increase the number of learnable query vectors from 32046
to 288 to enhance its ability to understand images and re-047

duce information loss during the image token compression 048
process, ultimately achieving a training time comparable to 049
other methods. 050

1.3. Main Results 051

From Table 1, it can be observed that our method incurs the 052
lowest training and inference costs among all approaches. 053
Specifically, the training time is only 76% of that required 054
by vanilla LLaVA-1.5-7B, and the average tokens are re- 055
duced to just 46% of the original. LLaVolta and ViCo 056
both achieve comparable performance on almost all bench- 057
marks. However, LLaVolta achieves only limited reductions 058
in training time, primarily due to its conservative approach 059
to compressing image tokens, which gradually decreases 060
the compression ratio during training. This strategy fails 061
to effectively eliminate image information redundancy. 062

In comparison with FastV, our method demonstrates su- 063
perior performance on nearly all benchmarks, including a 064
1.5% improvement on SQA and a 1.2% improvement on 065
AI2D, while also achieving shorter training times, result- 066
ing in a double win. Furthermore, in inference, ViCo uses 067
fewer FLOPs than FastV, indicating that our approach sur- 068
passes FastV in both training and inference stages. This 069
indicates that FastV’s early removal of image tokens in- 070
evitably leads to performance degradation, whereas ViCo’s 071
strategy is much more reasonable, retaining all critical im- 072
age information in the shallow layers. Additionally, Q- 073
former performs poorly across all benchmarks, primarily 074
because the Q-former structure requires extensive pretrain- 075
ing data, which is insufficient in the LLaVA-1.5-7B training 076
recipe to yield strong results. 077

2. Ablation Study about Stage S 078

In this section, we primarily discuss the ablation study of 079
stages S. In these experiments, we set λ to 0.5, consistent 080
with the previous experiments, and continue to follow the 081
principle of evenly distributing layers within the LLM. If 082
the entire LLM forward process is divided into more stages, 083
the model will remove more image tokens at earlier layers, 084
leaving fewer image tokens in the later layers of the LLM. 085
Conversely, if fewer stages are used, the number of token 086
compression steps during the forward process decreases, re- 087
sulting in greater redundancy. This parameter is utilized to 088
balance the performance and efficiency of ViCo. 089

2.1. Results Analysis 090

As shown in Table 2, we vary the number of stages from 091
3 to 5. Overall, the model’s performance remains robust 092
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Method
Average
tokens

GPU
hours

Infer
Flops(T)

POPE SQA MMB GQA
OCR
VQA

SEEDI MMStar AI2D
Text
VQA

LLaVA-1.5-7B 576 104 (100%) 3.82 85.9 66.8 64.3 62.0 59.8 66.1 33.2 55.6 58.2

Q-former 288 88 (84.6%) 1.89 67.2 66.9 53.8 41.3 19.0 49.2 28.6 51.8 44.4
FastV 306 81 (78.0%) 2.01 85.2 69.5 65.6 61.0 60.7 65.3 33.4 55.3 58.4
LLaVolta 339 93 (89.4%) 3.82 85.6 69.6 63.6 62.2 60.0 66.3 33.2 55.7 58.3
ViCo 270 79 (76.0%) 1.78 86.0 71.0 66.1 61.9 61.0 65.5 34.0 56.5 58.5

Table 1. Compare ViCo with other efficient training strategies. Average tokens here refer to the average image tokens across all LLM
layers, while GPU hours represent the time required for model training. As shown in the table, our method achieves the best performance
on nearly all benchmarks while also being the most cost-effective strategy in terms of both training and inference.

Model λ Stage
GPU
hours

Infer
Flops(T)

GQA SEEDI MMB TextVQA POPE SQA

LLaVA-1.5-7B

vanilla vanilla 104 (100%) 3.82 62.0 66.1 64.3 58.2 85.9 66.8
0.5 3 85 (62.2%) 2.13 62.0 66.1 66.2 58.4 86.2 70.5
0.5 4 79 (76.0%) 1.78 61.9 65.5 66.1 58.5 86.0 71.0
0.5 5 75 (78.9%) 1.38 61.4 65.5 65.9 57.8 86.1 69.9

Table 2. Ablation study results about stages S. Dividing the LLM forward process into more stages causes the model to eliminate a larger
number of image tokens in the earlier layers, leaving fewer tokens for processing in the later layers. On the other hand, using fewer stages
reduces the number of token compression steps throughout the forward process, leading to increased redundancy. This parameter serves to
balance the trade-off between the performance and efficiency of ViCo.

across these changes, demonstrating that our compression093
strategy is relatively well-designed and not overly sensitive094
to hyperparameters.095

However, on more challenging benchmarks such as096
SEED Bench and TextVQA, a noticeable performance de-097
cline occurs when the number of stages is increased to 5.098
If stages are further increased, the model’s performance099
clearly deteriorates. This is reasonable because, at the max-100
imum stage setting of 32, ViCo would begin removing half101
of the image tokens right after the first layer, leaving only 2102
image tokens by 8 layer, inevitably discarding critical image103
information.104

Meanwhile, with stages set to 3 or 4, there is no sig-105
nificant performance drop. Therefore, we ultimately select106
S = 4, which strikes a balance between preserving perfor-107
mance and effectively pruning redundancy by concentrating108
the limited image tokens on the important regions of the im-109
age.”110
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