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Large-Scale Unlabeled Data with an Iterative Data Engine
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1. Data Collection

We collect large-scale unlabeled data from five data sources:
unsplash, pexels, flickr, google, baidu. We use ‘mirror’ as
the keyword to search for and download data in batches. To
ensure that each collected image contains mirrors, we use
the MiniCPM-V 2.6, a multi-modal large language model,
to determine whether there is a mirror in the image. The
text prompt is ‘Give you an image:<image>./</image>.
Does this image contain mirrors? Answer me Yes or No and
do not explain.” To ensure the accuracy of this approach,
we randomly checked 15% of the collected mirror images
for which the MiniCPM-V 2.6 model identified as ‘Yes,
resulting in an accuracy of 99.8%.

2. More Details in Our Experiments

Compared Methods. We compare our method with
seven supervised networks and four semi-supervised meth-
ods.  Seven supervised methods are SegFormer [12],
Mask2Former [2], MirrorNet [15], PMDNet [5], SANet [3],
VCNet [10], and HetNet [4]. Four semi-supervised methods
are: Mean Teacher [11], UAMT [16], DepthAnything [14],
and UniMatch [13]. The Mean Teacher method was origi-
nally designed for image classification tasks, while UAMT
was developed for 3D medical image segmentation. There-
fore, we re-implement these two methods using a more ad-
vanced segmentation model, specifically SegFormer [12], in
this paper. For the DepthAnything method, we employ the
DINOv2-small encoder [8] for feature extraction and use
the DPT [9] decoder for mirror detection. Consistent with
the original paper, we adopt DeepLab-V3 [1] with ResNet-
101 as the feature encoder for mirror detection in the Uni-
Match [13] method. For all semi-supervised methods, we
utilize the same training set with collected unlabeled data
as our method for fair comparisons.

More Implementation Details. We test two input sizes,
518 x 518 and 336 x 336, during training and inference
to observe the performance effects of different image sizes.

Datasets Methods Image Size IoU?T Accuracyt Fzt MAE] BER]
MSD [15] DAM (Ours) 336 0.928 0.965 0.960  0.024 2.55
DAM (Ours) 518 0.934 0.980 0.968  0.019 2.32
PMD [5] DAM (Ours) 336 0.723 0.839 0.841  0.027 9.14
DAM (Ours) 518 0.734 0.851 0.852  0.019 8.08
RGBD* [7] DAM (Ours) 336 0.801 0.876 0.852  0.039 7.51
DAM (Ours) 518 0.808 0.885 0.870  0.030 6.42

Table 1. The performance effects of different input sizes are evalu-
ated. RGBD* denotes the RGBD-Mirror* dataset. Decreasing the
input sizes has a slight effect on various evaluation metrics, but
our method still demonstrates strong performance across the three
test datasets.

These two input sizes are multiples of 14, as the pre-defined
patch size of DINOv2 encoders [8] is 14. During training,
we use 8 NVIDIA RTX 4090 GPUs, with a batch size of 4
on each GPU, and the loss function is cross-entropy loss [6].
We adopt horizontal flip, color jitter, random grayscale, and
random blur for unlabeled images with probabilities of 0.5,
1.0, 0.2, and 0.5, respectively. Moreover, for the SegFormer
backbone in Mean Teacher and UAMT, we use an input size
of 512 x 512. For the DINOv2 backbone in the DepthAny-
thing method, we utilize an input size of 518 x 518. These
input sizes are consistent with those used in the original pa-
pers [12, 14].

3. More Ablation Study

Ablation of the Smaller Input Size. Table 1 shows the
quantitative comparisons for the different input sizes (i.e.,
518 x 518 and 336 x 336). Our method demonstrates robust
performance across the three test datasets.

Ablation on the Iteration Number of the Data Engine.
As shown in Figure 1, we conduct additional experiments
where we increase the iteration number of our data engine.
In this figure, we observe that the performance gains di-
minish when the iteration number exceeds 3. Therefore, to
improve training efficiency, we choose an iteration number
of 3 as our default setting in this paper.


https://unsplash.com/
https://www.pexels.com/zh-cn/
https://www.flickr.com/
https://www.google.com/
http://www.baidu.com

4. Future Work and Limitation

Currently, the model size is DINOv2-small [8]. In the fu-
ture, we plan to increase the model size to further enhance
the generalization capability of our model. Furthermore, in
scenes with smaller mirrors, we also need to support a larger
input size than the current 518 x 518 or 336 x 336.

5. More Visualization

Please refer to the following figures (i.e., Figure 2, 3, 4)
for comprehensive qualitative results in more challenging
scenes. Our method demonstrates impressive generalization
capability across various challenging scenarios. Addition-
ally, we present the corresponding output feature maps from
the segmentation head in our network. Our method not only
accurately detects mirror areas but also outputs distinctive
values for different objects in the feature maps.
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Figure 1. Ablation on the iteration number of the data engine. We observe that the performance gains diminish when the iteration number
exceeds 3. Therefore, to reduce training time, we choose an iteration number of 3 as our default setting in this paper.
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Figure 2. Additional visualizations of challenging scenes using our DAM and other state-of-the-art methods, along with the feature maps
from our method.
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Figure 3. Additional visualizations of challenging scenes using our DAM and other state-of-the-art methods, along with the feature maps
from our method.
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Figure 4. Additional visualizations of challenging scenes using our DAM and other state-of-the-art methods, along with the feature maps
from our method.
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