
Empowering LLMs to Understand and Generate Complex Vector Graphics

Supplementary Material

Overview
In this supplementary material, we provide additional de-
tails and discussions related to our work on LLM4SVG.
Specifically, this document covers the following aspects:
• Comparison with Existing LLM-Based Methods

(Sec. A): We demonstrate the advantages of our approach
over existing LLM-based methods for SVG generation,
particularly in terms of visual appeal and the ability to
handle numerical coordinates.

• Dataset and Preprocessing Pipeline (Sec. B): We in-
troduce our newly collected dataset and describe a loss-
less preprocessing pipeline that enhances data quality for
training and evaluation.

• SVG Semantic Tokens (Sec. C): We provide details on
the SVG semantic tokens used in our model, along with
an analysis of how different word embedding initializa-
tion methods affect model performance.

• User Study Details (Sec. D): We present additional de-
tails about the user study, including the number of partic-
ipants, their backgrounds, and the methodology used to
obtain evaluation metrics.

• Primitive Ordering in SVG Generation (Sec. E): We
illustrate how our LLM4SVG model generates SVGs by
following a structured primitive ordering strategy. We
compare two different generation approaches—a step-
by-step composition process and a top-down refinement
method—and discuss their implications for SVG inter-
pretability and usability.

• Additional SVG Generation Results (Sec. F): We show-
case a diverse set of SVG illustrations generated by our
model, demonstrating its ability to produce high-quality,
semantically accurate, and stylistically consistent vector
graphics across various categories, including objects, an-
imals, food, and abstract symbols.

A. Comparison with LLM-based Methods
Apart from Figure 4 in the manuscript, we present addi-
tional qualitative comparisons of our method with existing
LLM-based methods in this section, including ChatGPT-
3.5 [36], GPT-4o [2], GPT-o1-preview [2], Claude 3.5-
sonnet [4], Gemini 1.5-pro [9], Grok 2 [63], LLama 3.1 [13,
54], Qwen 2.5 [51, 57], and Yi [68].

As illustrated in Fig. S3, it is evident that our proposed
LLM4SVG outperforms other methods in terms of overall
visual effect and detail expression. Specifically, most LLMs
struggle to generate complete SVG images, for example,
butterfly, or produce outputs that accurately align with the
provided textual descriptions, such as two-hump camel il-

Decimal coordinates
(round to a precision of

two decimal places)

Integer coordinates

Figure S1. Visual Comparison between Decimal Coordinates
and Integer Coordinates in SVGs. Only integer coordinates will
lead to shape distortions and incompletion.

lustrated in the last third example. Some recent LLMs per-
form relatively better, such as GPT-4o, GPT-o1-preview [2],
and Claude 3.5-sonnet [4]. However, their results are still
less satisfactory as the shapes are overly simplistic (e.g.,
flute) and the colors lack harmony (e.g., a bed). In con-
trast, the results of our LLM4SVG are more complete, with
shapes that are more diverse, colors that are more harmo-
nious, and semantics that are more closely aligned with the
prompts.

Additionally, we compare the SVG source codes gen-
erated by our method and two of the most recent LLMs,
GPT-o1-preview [2] and Claude 3.5-sonnet [4], to demon-
strate the superiority of our method. As shown in Fig. S4,
given the prompt “umbrella”, both GPT-o1-preview [2] and
Claude 3.5-sonnet [4] can only predict integer coordinates,
whereas our LLM4SVG is capable of generating precise
decimal coordinates accurate to two decimal places. In the
context of SVG representation, retaining only integer values
can lead to incomplete or distorted SVG shapes, as illus-
trated in Fig. S4. We present additional examples in Fig. S1
to further demonstrate the visual differences between inte-
ger and decimal coordinates.

B. SVGX-SFT Dataset Details
Figure S2 presents examples from our extensive and di-
verse SVGX-SFT dataset. This dataset includes primi-
tives of varying complexity, ranging from minimal to highly

Figure S2. Illustrative Samples from the SVGX-SFT Dataset,
showcasing its diversity in style, structure, and semantics. The
dataset includes a wide range of objects, icons, and illustrations,
making it well-suited for training and fine-tuning vector graphic
generation models.

detailed, while maintaining a rich and harmonious color
palette. Additionally, it covers a broad spectrum of subjects,
including people, animals, objects, and symbols, making it
a comprehensive resource for both SVG generation and un-
derstanding tasks.
Preprocessing Pipeline. As discussed in Section 3 of our
manuscript, a significant portion of an SVG file consists of
redundant metadata that does not contribute to its rendered
appearance. To improve training efficiency while preserv-
ing visual fidelity, we introduce a lossless SVG preprocess-
ing pipeline, as illustrated in Figure S5.

Our pipeline systematically removes unnecessary ele-
ments from SVG files, including XML declarations, com-
ments, titles, descriptions, <defs> and <class> tags, as
well as global <g> tags. Additionally, we optimize numer-
ical representations by converting absolute coordinates to
relative ones and rounding decimal values to a maximum of
two decimal places. Furthermore, all SVGs are resized to a
standardized 128→128 canvas, ensuring consistency across
the dataset. These optimizations significantly reduce file
size and computational overhead without altering the visual
output.
Instruction-Based Dataset Construction. After prepro-
cessing, we structured the dataset to support both SVG gen-
eration and understanding tasks. For understanding tasks,
each SVG was rasterized into an image, and GPT-4 [2] was
used to generate detailed descriptions, which serve as learn-
ing targets. For generation tasks, textual prompts were gen-
erated using BLIP [29], with the corresponding SVG source
code serving as the learning content.

In total, our dataset comprises 580k high-quality SVG-
text instruction-compliant samples, providing a robust foun-
dation for training models in structured vector graphic gen-
eration and interpretation.

C. Our Proposed SVG Semantic Tokens
For an input SVG Xv , we convert it from raw code into a
structured representation. As shown in Tab. S1, we present
a detailed taxonomy of the SVG semantic tokens employed

in LLM4SVG, including 15 tag tokens, 30 attribute tokens
and 10 path command tokens. These SVG tokens are used
to replace all tags and attributes in the SVG source code,
thus preventing the textual encoding of SVG tags and at-
tributes as regular text. This ensures the uniqueness of SVG
tags and attributes, and allows for their efficient integration
into LLMs in a manner that is consistent with SVG defi-
nitions. The “Description” field is utilized to initialize the
SVG Tokens based on Equation 1.
Analysis of Word Embedding Initialization Method. As
illustrated in Fig. S6, we used T-SNE [55] to map the newly
added tokens into a two-dimensional visualization for bet-
ter demonstration. In this visualization, the green dots rep-
resent tokens that were initialized using the text description
of each token. Specifically, we averaged the values obtained
from tokenizing these descriptions to initialize the tokens, a
process detailed in Sec. 4.1. This strategy groups the to-
ken embeddings into a relatively compact region within the
feature space, which helps reduce the difficulty of model
training. The orange crosses, on the other hand, indicate to-
kens that were initialized without using the text description.
These tokens exhibit a more scattered distribution across the
feature space, making it challenging for the model to learn
the accurate meaning of these tokens. The blue squares rep-
resent the positions of the tokens within the feature space
post-training. It is evident that after the training phase, the
token embeddings show more meaningful groupings, where
tokens with similar semantics are clustered together while
maintaining relative proximity to all SVG tokens. Addition-
ally, these tokens remain closely within the overall feature
space. This visualization demonstrates the rationale behind
our token addition method and the effectiveness of our train-
ing approach.

D. More Details about User Study
We conducted a user survey to evaluate the effectiveness
and practicality of the SVGs generated by our method
LLM4SVG and two other popular LLMs, GPT-4o [2] and
Claude-3.5 [4]. Specifically, the user study was structured
as follows:
1. Data Preparation: We randomly sampled 17 text de-

scriptions from the evaluation dataset and generated cor-
responding SVGs using the three models. Along with
the original 17 SVGs from the dataset, this provided a
total of 68 SVGs for the user study.

2. Questionnaire Design: Each questionnaire displayed 5
SVGs, randomly sampled from the pool of 68 SVGs.
These SVGs were not necessarily generated from the
same prompt.
As illustrated in Fig. S7, participants were asked to eval-
uate each SVG on three aspects:
• Prompt Alignment: How well does this SVG align

with the given prompt? (Rated on a scale from 1 to 5,

a bed

boar. a cartoon
boar head with

a big nose.

computer and
keyboard

butterfly

GPT-4o GPT-4
o1-preview

Claude 3.5
sonnet

Gemini 1.5
pro

Grok 2 Llama 3.1 Qwen 2.5 Yi OursPrompt GPT-3.5

two-hump
camel. camel

cartoon vector
illustration

Santa Claus
medium skin

tone

flute

Figure S3. Qualitative Comparison of LLM4SVG with Existing LLM-based Methods. Given textual prompts (left), various LLMs
generate corresponding vector graphics. The comparison highlights differences in abstraction, structural consistency, and fidelity to the
input descriptions. Our LLM4SVG demonstrates improved coherence, accuracy, and stylistic refinement in SVG generation.

where 1 indicates the lowest score, while 5 represents
the highest score.)

• Visual Quality: How appealing is the visual design of
this SVG? (Rated on a scale from 1 to 5, where 1 indi-
cates the lowest score, while 5 represents the highest
score.)

• Pick Score: Would you consider using this SVG in
real-world scenarios? (Yes/No)

3. Result Calculation: This user study involves 37 vol-
unteers from backgrounds in computer science and the
arts. Each volunteer was required to complete between
1 and 3 questionnaires. Scores presented in Table 3 of
our manuscript were calculated by averaging the ratings
for SVGs within the same category. For “Prompt Align-
ment” and “Visual Quality”, the ratings were adjusted by
a coefficient ω = 0.2, such that a score of 1 translates to
0.2, and a score of 5 counts to 1. For “Pick Score”, a
“Yes” was scored as 1, while a “No” was scored as 0.

E. Primitive Ordering in SVG Generation

Figure S8 illustrates how our LLM4SVG model generates
SVGs by following a primitive ordering strategy that aligns
with human design principles. This structured approach en-
sures that vector graphics are constructed in an intuitive and
interpretable manner.

The upper sequence in Figure S8 demonstrates a step-
by-step composition process. The design begins with a
few basic primitives, such as lines and simple shapes, and
progressively adds more details. This method closely re-
sembles how human designers create illustrations—starting
with foundational elements before refining them into a com-
plete object. For example, the umbrella starts with a simple
handle, then adds canopy sections until the final structured
design emerges. Similarly, the dolphin illustration begins
with a basic shape, followed by gradual refinements to en-
hance realism. This process ensures that each step main-
tains logical continuity, making the SVG more comprehen-
sible and easier to manipulate.

In contrast, the lower sequence showcases an alternative

<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 200 200" width="200" height="200">
<!-- The top of the umbrella -->
<path d="M50,60 Q100,20 150,60" fill="#3498db" stroke="black" stroke-width="2" />
<!-- The pole of the umbrella -->
<rect x="95" y="60" width="10" height="90" fill="#8B4513" stroke="black" stroke-width="2" />
<!-- The edge of the umbrella -->
<path d="M50,60 Q45,80 55,100 Q100,120 145,100 Q155,80 150,60" fill="rgba(0,0,0,0)"
stroke="black" stroke-width="2" />
<!-- The decorative line of the umbrella -->
<line x1="100" y1="60" x2="50" y2="80" stroke="black" stroke-width="2" />
<line x1="100" y1="60" x2="150" y2="80" stroke="black" stroke-width="2" />
<line x1="100" y1="60" x2="70" y2="90" stroke="black" stroke-width="2" />
<line x1="100" y1="60" x2="130" y2="90" stroke="black" stroke-width="2" />
<line x1="100" y1="60" x2="90" y2="100" stroke="black"
stroke-width="2" />
<line x1="100" y1="60" x2="110" y2="100" stroke="black"
stroke-width="2" />
</svg>

GPT-o1-preview

<svg xmlns="http://www.w3.org/2000/svg" enable-background="new 0 0 128
128" viewBox="0 0 128 128">
<path d="m60.2 96.55-.31-42.82 5.57.31.31 44.83z" fill="#6aa5ad"/>
<path d="m47.46 104.64c-3.27-.16-4.94 2.31-4.52 6.93s3.14 11.63 12.6
11.45c10.92-.21 11.75-7.8 11.57-16.21-.12-5.85 0-10.48-.31-10.69s-7.9-
.41-8.32.01-.11 9.56-.21 11.76.28 6.62-3.78 6.51c-3.15-.09-3.57-2.73-
3.57-3.99.01-1.25.74-5.56-3.46-5.77z" fill="#3f7377"/>
<path d="m52.12 36.21 10.42-18.75s-20.55-2.54-38.8 11.63c-23.2 18.02-
19.53 37.77-19.53 37.77s8.84-8.42 16.07-7.78 16.29 9.39 16.29 9.39z"
fill="#937ef3"/>
<path d="m65.06 23.21-1.49-5.75s20.87-.23 36.42 9.96c26.73 17.52 23.78
37.08 23.78 37.08s-5.8-8.08-18.54-7.51-17.4 11.94-17.4 11.94z"
fill="#5547f4"/>
<path d="m87.86 68.12s-1.16-19.12-5.6-28.95c-8.1-17.95-19.25-21.42-
19.25-21.42s-13.42 6.6-20.48 22.87-5.85 27.76-5.85 27.76 10.86-12.41
26.67-10.7 24.51 10.44 24.51 10.44z" fill="#6e62ed"/>
<path d="m59.11 18.23c-.14-.55-.02-7.9-.07-9.48-.07-2.34 1.92-3.83
3.71-3.78 2.34.07 3.16 2.13 3.23 3.57s.08 9.52.07 9.62c-.09.84-1.32
1.64-3.5 1.65-1.59 0-3.25-.82-3.44-1.58z" fill="#6ca4ab"/>
<path d="m87.79 70.59c1.64-.1 8.19-11.36 18.47-11.26 13.95.14 15.75
7.39 17.21 6.64 1.61-.82-.76-3.83-2.87-6.01-2.98-3.08-7.75-4.94-15.16-
4.46-10.79.7-17.75 10.27-17.75 10.27s-9.2-10.04-25.33-10.04c-15.6 0-
25.67 11.1-25.67 11.1s-5.1-9.02-17.51-9.24c-10.96-.18-15.7 8.65-14.93
9.42s6.61-6.23 14.8-5.88c11.26.48 15.2 9.89 17.36 9.94 2.15.05 10.56-
11.3 26.15-11.03 16.74.29 23.69 10.65 25.23 10.55z" fill="#004dae"/>
</svg>

<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 200 200" width="200" height="200">
<!-- The surface of the umbrella -->
<path d="M10 100 Q100 20 190 100" fill="#FF6347" stroke="#000" stroke-width="2"/>
<!-- The ribs of the umbrella -->
<path d="M100 100 L10 100 M100 100 L55 60 M100 100 L145 60 M100 100 L190 100" stroke="#000"
stroke-width="2"/>
<!-- The pole of the umbrella -->
<path d="M100 100 Q105 140 110 180" stroke="#000"
stroke-width="4" fill="none"/>
<!-- The handle of the umbrella -->
<path d="M110 180 Q120 185 110 190" stroke="#000"
stroke-width="4"
fill="none"/>
</svg> Claude 3.5-pro

Prompt: umbrella

LLM4SVG (Ours)

Figure S4. Example SVG Code Comparison For the Prompt “umbrella”. The figure contrasts SVG outputs generated by GPT-4o-
preview, Claude 3.5-sonnet, and our LLM4SVG. While GPT-4o-preview and Claude 3.5-pro produce basic umbrella-like shapes, their
structures contain artifacts or lack refinement. In contrast, LLM4SVG generates a more polished, visually coherent, and structured SVG
representation, demonstrating improved detail, smoothness, and geometric accuracy.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!– From Reshot -->
<svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve"
width="655.359" height="655.359"
style="shape-rendering:geometricPrecision;text-
rendering:geometricPrecision;image-rendering:optimizeQuality;fill-
rule:evenodd;clip-rule:evenodd"
viewBox="0 0 6.827 6.827">
<title>kite</title>
<desc>kite fly icon</desc>
<defs>
<style>
.fil1 { fill: #fffffe; fill-rule: nonzero }
</style>
</defs>
<g id="Layer_x0020_1">
<rect fill="#ffca28" height="6.827" rx=".853" width="6.827" />
<g id="_306104088">
<path id="_303527560" class="fil1"
d="M2.567 4.58a.106.106 0 0 0-.17-.127c-.186.248-.224.48-.258.695-
.039.238-.074.454-.361.628a.106.106 0 1 0 .11.182c.372-.226.414-
.487.46-.777.031-.19.064-.394.219-.6z" />
<path id="_303527152" class="fil1"
d="M2.046 4.735a.107.107 0 0 0-.039.21l.636.119a.107.107 0 0 0 .039-
.21l-.636-.12z" />
<path id="_303527536" class="fil1"
d="M1.888 5.192a.107.107 0 0 0-.039.21l.635.12a.107.107 0 0 0 .04-
.21l-.636-.12z" />
<path id="_306104328"
d="m4.303.922.788 1.75a.107.107 0 0 1-.043.135l-2.494 1.8c0 .003-
.116.024-.15-.023a.106.106 0 0 1-.02-.065l-.151-3.074a.107.107 0 0
1 .09-.11L4.177.856a.107.107 0 0 1 .126.065zm-.101.093-.533 1.108
1.224.588-.046.096-1.224-.589-1.041 2.166-.096-.046 1.041-2.166-1.224-
.588.046-.096 1.224.589.533-1.108.096.046z"
style="fill:#fffffe" />
</g>
</g>
</svg>

<svg clip-rule="evenodd" fill-rule="evenodd" image-rendering="optimizeQuality"
shape-rendering="geometricPrecision" text-rendering="geometricPrecision"
viewBox="0 0 128 128" width="128" height="128"
xmlns="http://www.w3.org/2000/svg">
<rect fill="#ffca28" height="128" rx="15.99" width="128" />
<g fill="#fffffe">
<path d="m48.13 85.87a1.99 1.99 0 0 0 -3.19-2.38c-3.49 4.65-4.2 9-4.84 13.03-
.73 4.46-1.38 8.51-6.76 11.77a1.99 1.99 0 1 0 2.06 3.42c6.97-4.24 7.76-9.13 8.62-
14.57.58-3.56 1.2-7.39 4.11-11.25z"
fill-rule="nonzero" />
<path d="m38.36 88.78a2.01 2.01 0 0 0 -.73 3.93l11.92 2.24a2.01 2.01 0 0 0 .74-
3.94l-11.93-2.25z"
fill-rule="nonzero" />
<path d="m35.4 97.35a2.01 2.01 0 0 0 -.73 3.93l11.9 2.25a2.01 2.01 0 0 0 .75-
3.93z" fill-rule="nonzero" />
<path d="m80.68 17.29 14.77 32.81a2.01 2.01 0 0 1 -.8 2.53l-46.76 33.75c0 .05-
2.18.45-2.82-.43a1.99 1.99 0 0 1 -.37-1.22l-2.83-57.64a2.01 2.01 0 0 1 1.68-
2.06l34.76-8.98a2.01 2.01 0 0 1 2.37 1.22zm-1.9 1.74-9.99 20.77 22.95 11.03-.86
1.8-22.95-11.04-19.52 40.61-1.8-.87 19.52-40.61-22.95-11.02.86-1.8 22.95 11.04
9.99-20.77z" />
</g>
</svg>

1. XML declarations

2. Comments

2. Titles

2. Descriptions

3. <class> tags

4 unused<id> tags
5. global <g> tags

3. <defs> and <style> tags

8. Canvas Size

6. Absolute coordinates
7. Decimal accuracy

Rendered image

Rendered image

Original SVG Code Optimized SVG Code

Resize canvas size

SVG Cleaning Pipeline:
1. Remove XML declarations
2. Remove comments, titles and descriptions
3. Process and remove <defs> and <class> attributes
4. Remove unused <id> tags
5. Remove global <g> tags
6. Convert absolute coordinates to relative
7. Set paths coordinates precision to 2
8. Resize canvas size to 128x128

Figure S5. Illustration of our SVG Processing Pipeline. The left side shows the original SVG code, which contains redundant elements
such as XML declarations, comments, metadata, unused tags, and absolute coordinates. The right side presents the optimized SVG code
after applying our cleaning pipeline, which improves efficiency, readability, and scalability by removing unnecessary elements, converting
absolute coordinates to relative, and standardizing canvas size. The rendered output remains visually consistent while significantly reducing
file complexity.

Category Token Description

SVG Container Tags

[<|START OF SVG|>] start of svg
[<|END OF SVG|>] end of svg
[<|start of g|>] start of svg group
[<|end of g|>] end of svg group

SVG Geometry Tags

[<|svg path|>] svg path element
[<|svg circle|>] svg circle element
[<|svg rect|>] svg rectangle element
[<|svg ellipse|>] svg ellipse element
[<|svg polygon|>] svg polygon element
[<|svg line|>] svg line element
[<|svg polyline|>] svg polyline element
[<|svg text|>] svg text element

SVG Gradient Tags
[<|svg linearGradient|>] svg linear gradient element
[<|svg radialGradient|>] svg radial gradient element
[<|svg stop|>] svg stop element

Path Commands

[<|moveto|>] svg path command, move to
[<|lineto|>] svg path command, line to
[<|horizontal lineto|>] svg path command, horizontal line to
[<|vertical lineto|>] svg path command, vertical line to
[<|curveto|>] svg path command, curve to
[<|smooth curveto|>] svg path command, smooth curve to
[<|quadratic bezier curve|>] svg path command, quadratic bezier curve
[<|smooth quadratic bezier curveto|>] svg path command, smooth quadratic bezier curve
[<|elliptical Arc|>] svg path command, elliptical arc
[<|close the path|>] svg path command, close the path, close-form

Attribute Tokens

[<|id|>] svg element attribute id
[<|d|>] svg element attribute define the path
[<|fill|>] svg element attribute fill
[<|stroke-width|>] svg element attribute stroke-width
[<|stroke-linecap|>] svg element attribute stroke-linecap
[<|stroke|>] svg element attribute stroke
[<|opacity|>] svg element attribute opacity
[<|transform|>] svg element attribute transform
[<|gradientTransform|>] svg element attribute gradient transform
[<|offset|>] svg element attribute offset
[<|width|>] svg element attribute width
[<|height|>] svg element attribute height
[<|cx|>] svg element attribute x coordinate of circle center
[<|cy|>] svg element attribute y coordinate of circle center
[<|rx|>] svg element attribute x radius of ellipse
[<|ry|>] svg element attribute y radius of ellipse
[<|r|>] svg element attribute radius of circle
[<|points|>] svg element attribute points
[<|x1|>] svg element attribute x1 coordinate
[<|y1|>] svg element attribute y1 coordinate
[<|x2|>] svg element attribute x2 coordinate
[<|y2|>] svg element attribute y2 coordinate
[<|x|>] svg element attribute x coordinate
[<|y|>] svg element attribute y coordinate
[<|fr|>] svg element attribute fr
[<|fx|>] svg element attribute fx
[<|fy|>] svg element attribute fy
[<|href|>] svg element attribute href
[<|rotate|>] svg element attribute rotate
[<|font-size|>] svg element attribute font-size

Table S1. SVG Semantic Tokens Defined by Our LLM4SVG. We define 15 tag tokens (including 4 SVG container tags, 8 SVG geometry
tags, and 3 SVG gradient tags), 30 attribute tokens, and 10 path command tokens in our LLM4SVG. The “Token” field corresponds to the
Token defined in Table 1. The “Description” field is used to initialize the Token .

Init with description
Init w/o description
After training

Different SVG
semantic tokens are intermingled.
e.g. The SVG geometry tags and
path command tags.

SVG geometry tags

Path command tags

All orange tokens are randomly
initialized, causing their
positions to be highly scattered,
which slows down the
convergence during training.

Well trained

Figure S6. t-SNE Visualization of Token Embeddings. The
green dots represent the SVG token embeddings initialized with
descriptions, while the orange crosses indicate those initialized
without descriptions. The blue squares represent SVG token em-
beddings after training.

Figure S7. Screenshot of Our Questionnaire used in the
LLM4SVG User Study. Participants evaluate five SVGs gen-
erated from a given text prompt based on three key criteria: (1)
Prompt Alignment—how well the SVG matches the given prompt,
(2) Visual Quality—the aesthetic appeal of the SVG, and (3) Pick
Score—whether the participant would consider using the SVG in
real-world applications. Ratings are provided on a 5-point scale,
with an additional Yes/No selection for practical usability.

approach where the entire object is introduced first, fol-
lowed by successive refinements. This method mimics a
top-down design strategy, where an overall form is quickly
established before adding intricate details. While this ap-
proach can be efficient for certain applications, it lacks the

gradually increase the number of primitives

Figure S8. Our LLM4SVG model generates SVGs with prim-
itive ordering that aligns with human design principles. The
upper example demonstrates a gradual design process, progressing
from individual components to the complete design. In contrast,
the lower example begins with the overall design before detailing
each individual component.

structured progression seen in human sketching workflows,
which typically emphasize incremental construction.

By structuring SVG generation in a way that mirrors hu-
man cognitive processes, our LLM4SVG model enhances
the interpretability and usability of vector graphics. This
structured ordering makes the model particularly useful for
applications such as educational tools that teach step-by-
step drawing, design software that supports intuitive vector
editing, and automated graphic generation systems that pro-
duce clear and logically constructed icons. The ability to
generate illustrations progressively ensures that the output
is both aesthetically pleasing and functionally adaptable.

F. Additional Results Generated by Our
LLM4SVG

Figure S9 showcases a diverse collection of SVG illustra-
tions generated by our LLM4SVG model. These results
demonstrate the model’s capability to produce high-quality,
semantically accurate, and visually appealing vector graph-
ics across a wide range of categories. The generated SVGs
span various domains, including:
• Objects: Everyday items such as a pen, paperclip, key,

and teapot.
• Animals: Illustrations of a dolphin, parrot, horse, fish,

and giraffe.
• Food: Fruits, vegetables, and prepared dishes, including

a tomato, orange, lime, and a rice bowl.
• People and Expressions: Human figures representing

different professions, emotions, and activities.
• Symbols and Abstract Concepts: Medals, graphs,

weather symbols, and a heart icon.
These results highlight the effectiveness of our model

in generating stylistically consistent and visually coherent
vector graphics. The illustrations maintain a balanced level
of abstraction while preserving key details, making them
suitable for real-world applications such as digital icons, UI
elements, and educational materials.

Figure S9. Additional results generated by our LLM4SVG model. This collection showcases a diverse range of high-quality SVG
illustrations covering various categories, including objects, animals, food, people, symbols, and abstract concepts. The results demonstrate
the model’s ability to produce visually appealing, semantically accurate, and stylistically consistent vector graphics.

